
Mitigating double-dipping in behavior-agnostic RL

Yaren Aslan1, Stephan Bongers1 and Frans A. Oliehoek1

1Delft University of Technology, Delft, the Netherlands

Abstract. This paper addresses the issue of double-dipping in off-policy evalua-
tion (OPE) in behaviour-agnostic reinforcement learning, where the same dataset
is used for both training and estimation, leading to overfitting and inflated perfor-
mance metrics especially for variance. We introduce SplitDICE, which incorpo-
rates sample-splitting and cross-fitting techniques to mitigate double-dipping ef-
fects in the DICE family of estimators. Focusing specifically on 2-fold and 5-fold
cross-fitting strategies, the original off-policy dataset is partitioned with random-
split to get separate training and evaluation datasets. Experimental results demon-
strate that SplitDICE, particularly with 5-fold cross-fitting, significantly reduces
error, bias, and variance compared to naive DICE implementations, providing a
more doubly-robust solution for behavior-agnostic OPE.

Keywords: DICE · off-policy evaluation · behaviour-agnostic · sample-splitting
· cross-fitting · double-dipping · overfitting

1 Introduction

In reinforcement learning, for each state of the environment, the agent takes a certain
action based on the policy, retrieves a reward based on this action and transitions into
a new state. The overarching goal of reinforcement learning methodologies is to ac-
quire an optimal policy which maximizes the long-term cumulative rewards [17]. In
the context of policy evaluation, off-policy evaluation (OPE) refers to the setting where
the agent estimates the value of a target policy by referring only to a dataset of experi-
ence previously collected by other policies in the said environment [16]. The objective
of OPE is to estimate the expected cumulative (discounted) reward that a new pol-
icy (namely, the target policy) would achieve if deployed in the environment. This is
important for understanding how well the new policy might perform before actually
deploying it [21]. However, it is essential to note that this logged experience is col-
lected by potentially multiple and possibly unknown behavior policies which requires
the embodiment of the concept known as behavior-agnostic.

Behaviour-agnostic OPE specifically denotes an approach where the learning al-
gorithm does not make any assumptions about the behavior policy that generated the
dataset [23]. Recent advancements in addressing the unknown bounds of behaviour-
agnostic OPE have led to the development of various estimators collectively referred to
as the "DICE" family which stands for DIstribution Correction Estimation [12], [22],
[26], [23]. These estimators are used to display the ratio between the propensity of the
target policy to visit distinct state-action pairs compared to their occurrence likelihood

2 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

in the off-policy data. DICE-based estimators exercise “a single marginal ratio to re-
weight the rewards for each state-action pair”, consequently achieving a relatively low
variance for the estimate values [3].

It is worth highlighting that policy evaluation in general requires tedious consider-
ation of the model complexity to prevent pitfalls such as overfitting or underfitting the
data. Overfitting occurs when a modeling approach mirrors every underlying pattern of
the data, resulting in high accuracy when applied to the original dataset. However, it
fails to generalize well to unseen and foreign datasets. This is mainly caused by data
with many features and/or an excessively large neural network. In this context, double-
dipping refers to the practice of overfitting a model by building (training) and evaluating
(estimating) it on the same dataset [2]. This then causes misleadingly high performance
metrics with artificially inflated statistical significance since the model is being evalu-
ated on the data it was trained on, leading to “circular logic”.

It is common in many DICE estimators to employ the same dataset to conduct the
training process and the estimation of the target policy [23]. This practice is the driv-
ing factor for double-dipping. Another pressing issue related to the double-dipping be-
haviour is that the DICE family employs primal and dual regularization techniques as
a regression method to tackle high variance and therefore to avoid overfitting [23]. The
main concern regarding this choice is that this introduces a trade-off, as regularization
can bias the parameter of interest with the aim of mitigating overfitting.

This paper explores how sample-splitting and cross-fitting techniques, when applied
to DICE estimators, can mitigate the impact of double-dipping in behavior-agnostic re-
inforcement learning and therefore reduce variance in the estimate results. To break
it down more clearly, the aim of this work is to adopt commonly used techniques in
double/debiased machine learning (DML), namely sample-splitting and cross-fitting,
for the DICE estimators and analyze how effective they are in mitigating the risks as-
sociated with double-dipping. DML’s "double" behaviour comes from simultaneously
estimating two predictive models: one for the primary target of interest and another for
auxiliary outcomes [7]. When compared against naive ML estimators, their fast rates
of convergence and robust behaviour with respect to a broader class of probability dis-
tributions makes the objective of this study even more striking [7]. In this work, we
introduce SplitDICE, which incorporates sample-splitting and cross-fitting into the ex-
isting implementation of the DICE estimator.

The paper begins with a background on integrating OPE, DICE, and DML in sec-
tion 2, followed by a review of related research on double machine learning meth-
ods and DICE estimators, identifying improvements and this study’s contributions in
section 3. It then outlines the technical methods, including sample-splitting and cross-
fitting, in section 4. The experimental setup, including data generation and configura-
tions, is detailed in section 5, and the results are analyzed in section 6, focusing on
convergence, error, variance, and bias, with statistical significance noted for relative
error. The paper concludes by discussing the results and limitations in section 7, and
section 8 highlights the 5-fold cross-fit DICE estimator’s superior performance over the
naive BestDICE in reducing error, bias, and variance.

Mitigating double-dipping in behavior-agnostic RL 3

2 Background

This section begins with background on reinforcement learning and policy evaluation,
followed by the motivation for off-policy evaluation and the DICE estimators designed
for behavior-agnostic settings. In section 2.1 and section 2.2, we introduce equations
from Yang et al. [23]. We then discuss the double-dipping problem, the main focus of
this study, and the proposed sample-splitting solution. Finally, we introduce SplitDICE,
the estimator developed to address this issue, and explain sample-splitting and cross-
fitting in section 2.3.

2.1 Policy Evaluation in Reinforcement Learning

In a reinforcement learning (RL) setting, we consider an infinite-horizon Markov Deci-
sion Process (MDP) [17]. This process is defined by the tuple M = ⟨S,A,R, T, µ0, γ⟩.
This consists of a state space S, action space A, reward function R, transition proba-
bility function T , initial state distribution µ0, and a discount factor γ ∈ [0, 1). In RL, a
policy π defines the agent’s strategy or behavior in an environment. It is a mapping from
states to actions, denoted as π(at | st), which specifies the probability distribution over
actions A that the agent selects when in state s at step t ≥ 0. The environment yields a
scalar reward rt = R(st, at) and then transitions to a new state st+1 ∼ T (st, at).

We define the value of a policy π by the discounted cumulative reward it receives:

ρ(π) := (1− γ)E

[∞∑
t=0

γtR(st, at) | s0 ∼ µ0,∀t, at ∼ π(st), st+1 ∼ T (st, at)

]
(1)

In RL, the behavior policy denoted as µ refers to the policy that the agent is currently
following to interact with the environment. It is a distinct concept from the target policy
π which the agent seeks to optimize and improve during its learning (training) process.
Therefore, naturally, in the context of policy evaluation, the policy being evaluated is
the target policy. In a more concrete way, with policy evaluation, we aim to evaluate
how effectively the training of the behavior policy aligns with the target policy. The
value of a target policy can be expressed equivalently in two manners using different
functions [23]:

ρ(π) = (1− γ) · Ea0∼π(s0) [Q
π(s0, a0)]

= E(s,a)∼dπ [R(s, a)] , s0 ∼ µ0

(2)

where Qπ stands for the state-action values and dπ represents the visitations of π
which satisfy the following:

Qπ(s, a) = R(s, a) + γ · PπQπ(s, a) (3)

dπ(s, a) = (1− γ)µ0(s)π(a|s) + γ · P ∗
πd

π(s, a) (4)

As the two linear operators, Pπ stands for the policy transition operator whereas P ∗
π

stands for its transpose which satisfy the following:

4 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

PπQ(s, a) := Es′∼T (s,a),a′∼π(s′)[Q(s′, a′)] (5)

P ∗
πd(s, a) := π(a|s)

∑
s′∼T (s,a)
a′∼π(s′)

T (s|s′, a′)d(s′, a′) (6)

The function Qπ represents the Q-values for policy π, mapping state-action pairs
(s, a) to their expected value under π. Additionally, the function dπ is the normalized
state-action visitation distribution, indicating the probability of encountering (s, a) un-
der π, averaged over time with γ-discounting.

2.2 DICE Estimators for Behaviour-agnostic Off-policy Evaluation

Off-policy evaluation (OPE) is a crucial technique in RL that aims to estimate the value
of a policy ρ(π) by using only a fixed dataset of experiences, without further interactions
with the environment. This aspect is particularly important in settings where interacting
with the real environment is costly, risky or even infeasible [21]. Therefore, OPE makes
it much more practical to improve policies in a controlled, off-line manner before any
real-world deployment, thereby mitigating possible risks and reducing high costs.

In this context, we assume we have access to a finite dataset D = {(s(i)0 , s(i), a(i),

r(i), s′(i))}Ni=1, where s
(i)
0 ∼ µ0, (s(i), a(i)) ∼ dD are samples from some unknown

distribution dD (such as the state-action visitation distribution dπ(s, a) for some un-
known policy π). Estimators using DICE methods employ the following expression to
derive an estimate average per-step reward value of the target policy:

ρ(π) = E(s,a,r)∼dD
[ζ̂(s, a) · r] where ζ̂(s, a) =

dπ(s, a)

dD(s, a)
(7)

where (s, a, r) ∼ dD is used as an abbreviated form of (s, a) ∼ dD, r = R(s, a), s′ ∼
T (s, a). In other words, this simulates sampling from the dataset D when using a finite
number of samples. Most importantly, ζ̂(s, a) stands for the distribution correction ra-
tio. The main objective of the DICE estimators is that they aim to approximate the value
of this correction ratio without requiring the knowledge of dπ or dD. This is where the
concept of behaviour-agnostic arises from. Note that the estimate calculation in Equa-
tion 7 is used as the standard DICE paradigm which corresponds to the dual objective.

This estimation is achieved by solving a linear programming (LP) problem under
the constraints imposed by the dπ distribution. Specifically, the DICE framework lever-
ages the duality between the Qπ-function and the dπ-distribution, as outlined in Yang et
al.’s work [23]. The estimation process involves expressing the objective as a min-max
optimization problem, where the Lagrangian formulation is used to handle the inherent
complexities of off-policy evaluation. To make this optimization feasible, particularly
when dealing with large or continuous state and action spaces, the Lagrangian is aug-
mented with regularization techniques which is known as the augmented Lagrangian
method (ALM) [18]. These regularizations are crucial as they introduce strong con-
vexity into the optimization problem, which stabilizes the solution and helps mitigate

Mitigating double-dipping in behavior-agnostic RL 5

issues like bias in gradient estimation. This approach allows the DICE estimators to
approximate the correction ratio ζ̂(s, a) without requiring explicit knowledge of the dπ

or dD distributions.

2.3 Double-dipping and Sample Splitting with k-fold Cross-fitting

Double-dipping in machine learning refers to overfitting by using the same dataset for
both model training and evaluation, leading to poor generalizability [2]. In the context of
DICE estimators, this issue arises as the same dataset is used for training and estimating
the target policy. In order to introduce more stability into the optimization, DICE em-
ploys mechanisms to apply regularization techniques and redundant constraints [23].
Regularization works by adding a penalty term to the loss function used to train the
model which increases the loss for larger model coefficients, thereby discouraging the
model from fitting too closely to the training data [5]. While regularization techniques
help mitigate overfitting, they can increase bias by preventing the model from capturing
true patterns.

Therefore, this study explores whether sample-splitting, a fundamental technique
from double/de-biased machine learning, can reduce variance while maintaining or re-
ducing bias. This is experimented with sample-splitting and cross-fitting methods being
layered on top of the regularization techniques mentioned in the previous section to fur-
ther improve the reliability and robustness of the estimation process. These methods en-
sure that the model is not overly dependent on any single partition of the data, leading to
more accurate and generalizable estimates. More specifically, sample-splitting involves
dividing the dataset into K folds, using one part for training and the other for estima-
tion, then switching roles to utilize the full dataset, a process known as cross-fitting.
This approach aims to restore efficiency lost due to data partitioning by averaging esti-
mates across all folds [8]. For further explanation on sample-splitting and cross-fitting
applied to DICE estimators, please see section 4.

3 Related Work

The study that sustains the backbone of this work is that of Yang et al. on off-policy
evaluation via the regularized Lagrangian [23]. By showing that the previous DICE
formulations are all equivalent to regularized Lagrangians of the same linear program
(LP), they specifically investigate the dual form, namely d−LP , for off-policy evalu-
ation. They then identify a list of choices with regards to translating this formulation
into a stable minimax optimization problem. These choices consist of the specifica-
tion of redundant constrains and the regularization of primal and dual variables. This
optimization unifies all the variants of the DICE estimators under one framework by se-
lecting an appropriate regularization configuration. These are listed as DualDICE [12],
GenDICE [25], GradientDICE [26], DR-MWQL and MWL [22], LSTDQ [10], Algae
Q−LP [13] and BestDICE with it being the variant that achieves the best performance
out of all. This said, the estimator introduced by our paper builds upon BestDICE as
well.

6 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

There has also been studies in developing doubly-robust estimators inspired from
the methods used in machine learning. In a recent study of Kallus and Uehara, with the
objective of achieving true off-policy evaluation in time-invariant Markov processes,
they develop a new estimator based on double reinforcement learning [9]. They design
an estimator that employs both estimated stationary density ratios and q-functions. This
design maintains efficiency even when both components are estimated slowly and en-
sures consistency when either component is estimated accurately. The strategy used for
the double reinforcement learning also sets the initiative behind this study. In their com-
parative analysis of the estimator architecture, one of the estimators used for compari-
son is DualDICE which is a part of the DICE family as mentioned before. This variant
uses dual regularization parameters similar to BestDICE which makes their work espe-
cially valuable to give close attention to the nature of dual regularized DICE estimators.
However, their study lacks a comparative analysis of different k-fold cross-fitting pro-
portions, which our paper aims to address.

In Chernozhukov et al.’s study for double machine learning for treatment and causal
parameters, they dive into the details of Double ML and the methodology behind it in
order to improve the performance of naive ML estimators [6]. Their objective differs
from previously mentioned studies since it does not encompass DICE estimators or off-
policy evaluation in its scope. By setting up a background for why and how modern
supervised statistical/machine learning fails to provide accurate estimators of causal
parameters, they provide reasoning behind the poor performance of naive estimators
one of which being regularization bias. They come to point out that while regulariza-
tion helps with stability and convergence, it introduces a bias into the estimator. This is
especially relevant to the current study since DICE estimators use techniques of primal
and/or dual regularization in order to avoid overfitting. It is essential to note that the
main objective of this study is to demonstrate the orthogonalization of double machine
learning, driven by the need to counteract bias introduced by non-orthogonal ML esti-
mators. However, our study is specifically motivated by addressing the phenomenon of
double-dipping, which naturally focuses on reducing variance. Since within the DICE
family, some estimators such as BestDICE have already been tailored to counteract the
negative effects of certain regularization choices on bias, our study prioritizes variance
as a more valuable performance metric than bias.

Jacob’s study on cross-fitting and averaging in machine learning for estimating het-
erogeneous treatment effects explores the performance of twelve different estimators
across four meta-learners [8]. The study aims to uncover correlations between the learn-
ing processes of these meta-learners and the specific procedures used in doubly robust
machine learning techniques, such as various types of sample-splitting, cross-fitting,
and averaging. While Jacob’s work is confined to machine learning and does not con-
cern off-policy evaluation, it offers valuable methodological insights for our work, par-
ticularly in establishing a robust comparative analysis. Although our study does not
employ the same breadth of techniques as Jacob’s, we adopt similar cross-fitting pro-
portions, specifically 2-fold and 5-fold cross-fitting, to maintain consistency in our ex-
perimental approach. However, it is important to recognize that the results in Jacob’s
study are more statistically significant than ours, largely due to the fact that the regular-
ization strategies within the DICE framework can potentially reduce the efficiency of

Mitigating double-dipping in behavior-agnostic RL 7

double machine learning techniques. This highlights the unique challenges of integrat-
ing behavior-agnostic off-policy evaluation with double machine learning, which differ
from those addressed in Jacob’s study.

4 Methodology

In the context of DICE estimators, as discussed in section 2, training the estimator
involves focusing on the Q-value functions and visitation densities. The parameter of
interest, in this case, is the estimated value of the target policy, ρ(π).

As suggested by Chernozhukov et al., we assume that a random sample (Wi)
i=1
N

with Wi is an individual observation drawn from the distribution of W is available
for evaluation and training [6]. For two fittings, we build two prediction models based
on the roles of the samples, these samples being I and Ic. The true value ν0 of the
nuisance parameter ν is estimated by ν̂0(I

c) using the training sample (Wi)i∈Ic . The
true value θ0 of the target parameter θ is estimated by the estimator θ̌0(I, I

c) using
the evaluation sample (Wi)i∈I . Here, the nuisance parameter refers to the distribution
correction ratio and the target parameter refers to the average per-step reward value, as
mentioned before in Equation 7. In the aggregation of the results, the calculation of the
joint estimate value is given by:

θ̃0 =
θ̌0(I, I

c)

2
+

θ̌0(I
c, I)

2
(8)

where I and Ic represent a random 50-50 split of the dataset. Over a batched number
of episodes {1, . . . , N}, the size of I is n, the size of Ic is also n, and the total sample
size is N = 2n. We then construct an estimator θ̌0(I, Ic) that employs the nuisance
parameter estimator ν̂0(Ic) where I is used for evaluation dataset and Ic is used for
training dataset. This can be interpreted as building the prediction model (neural net-
work) of the estimator on the training dataset, Ic. Then, we reverse the roles of I and
Ic and construct an estimator θ̌0(Ic, I) that employs the nuisance parameter estimator
ν̂0(I) where Ic is used for evaluation dataset and I is used for training dataset. We are
now building the prediction model (neural network) of the estimator on the dataset I
that was used as evaluation dataset in the first fitting. The results of the two estimators
are then aggregated into a final estimate value, θ̃0 by taking the average.

For a fold number that is larger than 2, the process involves a K-fold random split
of the entire sample with k = 1, . . . ,K. Then, for each fold we construct an estimator
θ̌0(Ik, I

c
k) that employs the nuisance parameter estimator ν̂0(Ick) where Ik is used for

evaluation dataset and Ick is used for training dataset. Note that each training set Ick =⋃
m ̸=k Im has size N ·

(
K−1
K

)
and each evaluation set Ik has size N

K and the total sample
size is N . The calculation for the joint estimate value is then given by:

θ̃0 =
1

K

K∑
k=1

θ̌0(Ik, I
c
k) (9)

As an example, we present the diagram in Figure 1 for a visual representation of the
splitting process that applies 5-fold cross-fitting. Each box colored with blue represents

8 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

the evaluation dataset of the corresponding iteration whereas the grey colored boxes are
merged altogether to represent the training dataset.

Fig. 1: Model representation for a 5-fold cross-fit estimator. The sample data is split
into 5 folds. During each iteration of cross-fitting, one fold, Ik, serves as the evalua-
tion dataset, while the remaining folds are merged into a training dataset, Ick. In each
iteration, a new estimator is built using the nuisance parameter estimator ν̂0(Ick). The
final estimate value θ̃0 is obtained after running all the iterations and averaging out the
results retrieved from each estimator.

Following the mathematical concepts provided before, we introduce SplitDICE,
which implements k-fold cross-fitting for DICE estimators. The three algorithms fun-
damental to the process of k-fold cross-fitting for the DICE estimators are presented in
section A. The core concept that comes preliminary to cross-fitting which is sample-
splitting is demonstrated in Algorithm 1, where the dataset is split into training and
evaluation sets based on a specified ratio, while preserving the episode structure of
the original data. Iterations continue until each subset is used for estimation, with re-
maining subsets forming the training set. All possible train-eval pairs are generated for
cross-fitting. Algorithm 2 and Algorithm 3 detail the training-estimation process and
the full run of k-fold cross-fitting respectively, contributing to the calculation of the
final joint estimate after running all the K folds.

5 Experimental Setup

For the purposes of this research, Google’s DICE-RL codebase was forked for own use
[24], it is made publicly available on the GitHub platform [1]. The datasets used for the
experiment were generated using OpenAI Gym, which is an open-source Python library
and a standard API for reinforcement learning. It provides simulated training environ-
ments to both train and test reinforcement learning agents. The environment simulated
to create datasets for the experiment is Frozenlake-v0, which features discrete ac-
tion and observation spaces. In the FrozenLake environment, the agent navigates a grid
world represented as a frozen lake, encountering holes and frozen surfaces (which re-
sult in failure with a reward of 0) and a goal (which results in success with a reward of

Mitigating double-dipping in behavior-agnostic RL 9

+1). This process can be reproduced by creating a behaviour and target dataset where
α = 0.0 refers to the dataset for the behaviour policy and α = 1.0 refers to the dataset
for the target policy. The aim is to estimate the average per-step reward value of the
target policy (also referred as cumulative normalized expected reward) using the be-
haviour policy. In addition to the environment specifications, as given in the default ex-
perimental setup of Nachum et al., 20 datasets are created with 20 unique seed numbers
(from 0 to 19, inclusive) for generalization purposes [12]. The number of trajectories
and the maximum length of each trajectory are set to 200 and 100 respectively for all
replications.

For all the datasets separately, the estimator is trained for 10,000 steps and the value
of the target policy is estimated at intervals of 100 training steps. Initially set as default
at 10,0000 training steps with estimations made every 500 steps, this configuration was
adjusted due to the Frozenlake environment’s faster convergence, necessitating fewer
training steps for accurate estimator performance.

For the experiment at hand, we use DICE with no cross-fitting (in other words,
Naive DICE), SplitDICE with 2-fold and 5-fold cross-fitting. For all the estimator types,
the estimator configurations are kept the same meaning we use the default choice of
parameters as provided in the codebase. More specifically, from the unified framework
of DICE estimators, the configurations used for the experiment are those belonging
to BestDICE due to its high performance and best unbiased estimate achievement as
concluded by Yang et al. [23]. More specifically, these configurations are listed as αQ =
0, αζ = 1, αR = 0/1 with ζ ≥ 0 and λ. Here, αQ stands for the primal regularizer and
αζ for the dual regularizer, they both influence how much regularization is applied to
the primal and dual problem in optimization, respectively. Additionally, αR stands for
inclusion (1) / exclusion (0) of reward, ζ and λ stand for the positivity and normalization
constraints.

6 Results
In this section, we present and analyze the experimental results in relation to the ob-
jectives of the study. The analysis is divided into three subsections: section 6.1 covers
relative error calculations and their statistical significance, section 6.2 examines other
performance metrics across all 20 seeds, and section 6.3 discusses convergence to the
ground truth, with a focus on variance as the key metric.

6.1 Error Calculation and Comparison
To evaluate the estimator’s error, we use the absolute relative error as a metric. This
choice is motivated by the fact that relative error normalizes the absolute error based on
the true value, resulting in a dimensionless measure. Such normalization is particularly
useful for comparing errors across different scales, which is relevant for this experiment.
The datasets, generated with different seeds, may have varying ground truth values for
the target policy’s average per-step reward. Therefore, the significance of an error lies
not just in its magnitude, but in its proportion relative to the true value.

The results shown via Figure 2a demonstrate the relative error for each scenario at
a given seed number starting from 0 to 19 (inclusive). The comparisons are made be-
tween the three values plotted per seed since datasets with different seeds have different

10 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

ground truths. The error is calculated by comparing the value of ground truth (retrieved
from the target policy) against the final estimated value for average per-step reward
(retrieved from the trained behaviour policy).

For a clear comparison of distribution of points, Figure 2b provides a categorical
whisker diagram for these error values. It indicates that DICE estimators used with
2-fold and 5-fold cross-fitting exhibit lower rates of error mostly in the spread of the
central portion of the data. As seen from shorter whisker lengths, the variance in error
values exhibits notable reduction with SplitDICE, particularly when applied with a 5-
fold cross-fitting. Although 2-fold SplitDICE is the only model without any outliers, the
error values are concentrated towards the edges of the box on the 1st and 3rd quartiles,
indicating a skewness in the distribution. Another important finding is that the median
line overlaps the mean for 5-fold cross-fitting, this implies that the data is not skewed
heavily in one direction and that there are no significant outliers pulling the mean away
from the median. This is noteworthy to mention since it confirms that higher-fold cross-
fitting provides better estimates due to more thorough validation, demonstrating its va-
lidity [6].

(a) The results are categorized by the consid-
ered estimator models, with the mean relative
error displayed for each as a general summary
of all the data points.

(b) The results are categorized by the consid-
ered estimator models, with the (non-outlier) data
points displayed as a randomized swarm to avoid
overlaps.

Fig. 2: Scatter (a) and box-whisker (b) plots showing the relative error between the
final estimated average per-step reward value and the ground truth. The results are
obtained for all the 20 seeds from 0 to 19, inclusive.

Before moving on with any statistical analysis on significance, we conducted An-
derson -Darling and Shapiro-Wilk tests to determine whether the data is normally dis-
tributed and thereby decide whether to continue with parametric or non-parametric ap-
proaches. Since the results of the test determined at least one of the datasets to be
not normally-distributed, non-parametric approaches were considered and therefore
Kruskal-Wallis test was determined suitable. This analysis aim to compare different
estimators’ performance and determine whether there exists statistically significant dis-
parities in the results of the relative error values. The results for Kruskal-Wallis test-
statistic and p-value are reported as 5.73377 and 0.05688 respectively, with the alpha
value set to 0.1 (i.e. significance level of 10%). A higher test-statistic suggests a greater
likelihood of significant differences among the groups. The obtained p-value indicates

Mitigating double-dipping in behavior-agnostic RL 11

that there is a 5.688% chance of reaching the observed test-statistic value if the null hy-
pothesis were true (i.e. there are no significant differences between groups). However,
given that the p-value is less than the predetermined significance level, the null hypoth-
esis is rejected. Therefore, we infer that at least one of the estimator categories exhibits
a mean that is significantly different from the others.

However, since Kruskal-Wallis is an extension of Mann-Whitney U test for three
or more categorical and independent groups, we also conducted Mann-Whitney U test
for post-hoc pairwise comparisons to identify which group(s) contributes to the sig-
nificance. The results of this test are reported via Table 1. From all the pairwise com-
parisons, the only significant result comes from Naive versus 5-fold. With the adjusted
p-value surpassing the significance level and a considerably high U-value, the differ-
ence in the median values of the two estimator models in terms of rank sums shows a
significant disparity.

Table 1: Mann-Whitney U Test Results for Relative Error Comparison

Group 1 Group 2 Test-statistic
(U-value) p-value Adj. p-value after

Holm correction Reject

2-fold SplitDICE 5-fold SplitDICE 230.0 0.42488 0.42488 False
2-fold SplitDICE Naive DICE 258.0 0.11986 0.23971 False
5-fold SplitDICE Naive DICE 286.0 0.02073 0.06220 True

6.2 Evaluation of Performance Metrics

Additionally, other metrics such as mean-squared error, bias and variance have been
calculated from the average per-step reward values of 2-fold and 5-fold cross-fit estima-
tors,as well as a naive single estimator, after training all for 10,000 steps. The formulas
for these metrics are detailed in section B. The resulting values have been provided in
Table 2.

We can say that the results advocate for the advantages of using cross-fitting meth-
ods over the naive estimator. The naive estimator has the highest MSE, marking less ac-
curacy in prediction. On the contrary, 2-fold cross-fitting significantly reduces the MSE
value reflecting a nearly 55% improvement. As we move on to 5-fold cross-fitting, we
see even a further reduction in the MSE performance with approximately a 70% im-
provement over the naive estimator and a 25% improvement over 2-fold. Additionally,
bias is substantially lower with cross-fitting methods compared to the naive estimator,
although surprisingly enough 5-fold demonstrates a slight increase in bias compared
to the 2-fold approach. As expected so, variance also show improvements with cross-
fitting; again with 5-fold cross-fitting achieves the lowest in both, establishing more
consistent and precise results of estimation.

Table 2: Performance measures for the considered estimators
Scenarios MSE Bias Variance

Naive estimator 7.773960e-06 0.000309 0.035533
2-fold cross-fit 3.424816e-06 0.000144 0.015937
5-fold cross-fit 2.487964e-06 0.000172 0.011163

12 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

6.3 Convergence of Average Per-Step Reward over Training

Plots provided by Figure 4 illustrate the average per-step reward over 10,000 training
steps, with results generalized using the median and error bars at 25th and 75th per-
centiles across 20 datasets with distinct seeds. The average reward of the target policy
serves as the ground truth, and results are aggregated by averaging over all seeds.As it
can be seen clearly, all three estimators show convergence to the true value of the target
policy. The convergence has a more fluid movement for SplitDICE however whereas
for the naive implementation, there seems to be more extremities and peaks through-
out the training process. The deviation in the convergence trend of Naive DICE shown
via Figure 4a is smoothed out when applied cross-fitting. Another noticeable remark is
that both folds of SplitDICE start with a relatively high peak at the start of the train-
ing process. Although variance is generally high, this is not the case for Naive DICE.
This could be attributed to sampling variability meaning the training set created as an
outcome of random split of the original dataset may not generalize well to the overall
dataset thereby leading to estimations that are far from the ground truth until the esti-
mator adjusts to the true distribution during the later stages of training. This is also an
apparent occurrence between the two different folds since 2-fold SplitDICE shown via
Figure 4b reaches a higher initial peak (between 0.05 and 0.06) compared to the 5-fold
SplitDICE shown via Figure 4c (between 0.04 and 0.05). This would also indicate that
by splitting of the data into higher number of folds, the training set is more likely to be
a better representative of the original dataset’s variability.

In order to truly understand the effects of the double-dipping behaviour, we analyze
the variance in the average per-step reward. We hypothesize that SplitDICE will exhibit
lower variance compared to Naive DICE, indicating that the double machine learning
strategies employed in SplitDICE provides better stability. As shown in Figure 3, Split-
DICE, particularly in the 5-fold configuration, demonstrates a tighter concentration of
data points around the median, whereas Naive DICE shows greater variability and less
consistency. This observation indicates not only that there is a descending trend in vari-
ance from Naive to 5-fold SplitDICE but also that SplitDICE (more significantly for the
5-fold version) densely clusters data points around the desired range achieving a more
stable and focused distribution. Additionally, for SplitDICE the gap between the mean
and the median is much smaller suggesting that distribution of reward values is more
symmetric and centered around the true value.

Fig. 3: Box-whisker plot showing the
estimated average per-step reward
value (calculated at step=10,000) for
each seed. The results are categorized
by the considered estimator models,
with the (non-outlier) data points dis-
played as a randomized swarm to
avoid overlaps. Additionally, the mean
ground truth value is displayed as a
reference criterion for comparison.

Mitigating double-dipping in behavior-agnostic RL 13

(a) The sample data is used both as a training and an evaluation dataset.

(b) The sample data is randomly divided into
training and evaluation subsets. Each subset is
used for fitting in turn, and the final estimate is
the average of both fittings.

(c) The sample data is randomly divided into
five subsets. Each subset is used once for esti-
mation while the remaining four are used for
training. The final estimate is the average of
the five fittings.

Fig. 4: Convergence to the true value (average per-step reward of the target policy)
over the entire training process of Naive DICE (a), 2-fold SplitDICE (b) and 5-fold
SplitDICE (c). The estimation of the average per-step reward value is done at every
100-step intervals of the entire training process, which totals 10,000 steps overall.

7 Discussion
The analysis yielded several insights. While variance is crucial for assessing double-
dipping risks, examining how the cross-fit strategy impacts bias was also valuable due to
the trade-off between them. Although the differences in bias were smaller than in vari-
ance, there was a clear downward trend from Naive DICE to SplitDICE. The whisker
plots in Figure 2b and Figure 3 revealed that while the estimators’ error values had sim-
ilar interquartile range widths, their overall value distributions differed. In contrast, for
the average per-step reward values, the patterns differed: the estimates for each model
were similarly close to the true value, but their interquartile ranges varied much more
significantly. In summary, this proves that variance in error was (nearly) unaffected
changing to SplitDICE but the variance in the average per-step reward values decreased
noticeably.

Additionally, before conducting the statistical analysis for relative error comparison,
we first assessed the normality of the datasets, choosing between the Shapiro-Wilk [19]
and Kolmogorov-Smirnov (K-S) [4] tests. The K-S test has limitations, including high

14 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

sensitivity to extreme values and invalid critical regions when parameters are estimated,
making it less suitable for this experiment [15]. Given that the Shapiro-Wilk test is
more appropriate for smaller sample sizes [11], we used both the Anderson-Darling (a
refinement of the K-S) [20] and Shapiro-Wilk tests. The Anderson-Darling test showed
non-normality for both 2-fold and Naive datasets, while the Shapiro-Wilk indicated only
2-fold was non-normal (with Naive’s p-value close to significance). These results led us
to use non-parametric methods for further analysis, specifically the Kruskal-Wallis test.
To account for potential false negatives, we also considered parametric methods under
the assumption of normality, using one-way ANOVA with Tukey’s HSD for post-hoc
analysis [14]. The statistical analysis showed a significant difference between the Naive
estimator and 5-fold SplitDICE at a 5% significance level, compared to 10% with non-
parametric methods.

We now discuss the study’s limitations, starting with the choice of environment:
Frozenlake-v0, which has a discrete action and observation space. This environment
was chosen for its simplicity and manageable computational demands. More complex
environments potentially offering richer datasets with discrete action space and contin-
uous observation space, such as Reacher-v2 and Cartpole-v0, were excluded due to
their higher computational requirements, as they need more training steps to converge
to the true value, as seen in previous DICE studies [23]. This choice ensured the experi-
ments could be completed within a reasonable time frame and with available resources.
Furthermore, the dataset was split by shuffling episodes from the off-policy dataset to
achieve a fully random split, reducing bias from the original data order. To address the
fluctuations due to shuffling variability, results were averaged across multiple seeds,
as suggested in prior DualDICE studies [12]. Although the episodes were shuffled, the
seed values for random number generation were systematically set from 0 to 19 for con-
sistency and reproducibility. Using randomized seeds could further enhance reliability
by minimizing the influence of randomness.

8 Conclusion

This study investigated how incorporating sample-splitting and cross-fitting techniques
can mitigate the issue of “double-dipping” in behavior-agnostic reinforcement learning.
These techniques were integrated into the DICE estimators, resulting in a new approach
called SplitDICE. The study involved partitioning the data into subsets and employing
cross-fitting through multiple training iterations to ensure each subset was used to es-
timate the average per-step reward of the target policy. Using the modified DICE-RL
codebase from Google Research, this study compared three models: Naive DICE (Best-
DICE), 2-fold SplitDICE, and 5-fold SplitDICE. Results revealed that 5-fold SplitDICE
achieved lower relative error rates compared to Naive DICE at 10% significance, and
exhibited a consistent reduction in MSE, bias, and variance across 20 seeds. Addition-
ally, the variance, calculated after 10,000 steps, decreased progressively from Naive
DICE to 2-fold SplitDICE and further to 5-fold SplitDICE, reflecting a pattern of in-
creasing stability in convergence. Future work could involve testing these methods in
more complex environments with larger trajectories and applying sample-splitting and
cross-fitting to other DICE variants such as DualDICE and GradientDICE to explore
their potential for scalability.

Mitigating double-dipping in behavior-agnostic RL 15

Acknowledgments. S. Bongers and F. A. Oliehoek are supported by the Mercury Machine
Learning Lab, a collaboration between TU Delft, UvA, and booking.com.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Aslan, Y.: Use of sample-splitting and cross-fitting techniques to mitigate
the risks of double dipping in behaviour-agnostic reinforcement learning.
https://github.com/compScienceYaren/dice_rl (2024)

2. Ball, T.M., Squeglia, L.M., Tapert, S.F., Paulus, M.P.: Double dipping in machine learning:
Problems and solutions. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
5(3), 261–263 (Mar 2020). https://doi.org/10.1016/j.bpsc.2019.09.003

3. Cen, Z., Liu, Z., Wang, Z., Yao, Y., Lam, H., Zhao, D.: Learning from sparse offline
datasets via conservative density estimation (arXiv:2401.08819) (Mar 2024). https://doi.org/
10.48550/arXiv.2401.08819, http://arxiv.org/abs/2401.08819, arXiv:2401.08819 [cs]

4. Chakravarti, I.M., Laha, R.G., Roy, J.: Handbook of Methods of Applied Statistics, Volume
I. John Wiley and Sons, Hoboken (1967)

5. Cheng, R., Verma, A., Orosz, G., Chaudhuri, S., Yue, Y., Burdick, J.W.: Control regulariza-
tion for reduced variance reinforcement learning (arXiv:1905.05380) (May 2019). https://
doi.org/10.48550/arXiv.1905.05380, http://arxiv.org/abs/1905.05380, arXiv:1905.05380 [cs,
stat]

6. Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W.: Double
machine learning for treatment and causal parameters (Jul 2016)

7. Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., Robins,
J.: Double/debiased machine learning for treatment and structural parameters. The Econo-
metrics Journal 21(1), C1–C68 (2018). https://doi.org/10.1111/ectj.12097

8. Jacob, D.: Cross-fitting and averaging for machine learning estimation of heteroge-
neous treatment effects (arXiv:2007.02852) (Aug 2020). https://doi.org/10.48550/arXiv.
2007.02852, http://arxiv.org/abs/2007.02852, arXiv:2007.02852 [stat]

9. Kallus, N., Uehara, M.: Efficiently breaking the curse of horizon in off-policy evaluation
with double reinforcement learning. Operations Research 70 (Feb 2022). https://doi.org/10.
1287/opre.2021.2249

10. Lagoudakis, M., Parr, R.: Least-squares policy iteration. Journal of Machine Learning Re-
search 4, 1107–1149 (Jan 2003). https://doi.org/10.1162/1532443041827907

11. Mishra, P., Pandey, C.M., Singh, U., Gupta, A., Sahu, C., Keshri, A.: Descriptive statistics
and normality tests for statistical data. Annals of Cardiac Anaesthesia 22(1), 67–72 (2019).
https://doi.org/10.4103/aca.ACA_157_18

12. Nachum, O., Chow, Y., Dai, B., Li, L.: Dualdice: Behavior-agnostic estimation of discounted
stationary distribution corrections (arXiv:1906.04733) (Nov 2019). https://doi.org/10.48550/
arXiv.1906.04733, http://arxiv.org/abs/1906.04733, arXiv:1906.04733 [cs, stat]

13. Nachum, O., Dai, B., Kostrikov, I., Chow, Y., Li, L., Schuurmans, D.: Algaedice: Policy
gradient from arbitrary experience (arXiv:1912.02074) (Dec 2019). https://doi.org/10.48550/
arXiv.1912.02074, http://arxiv.org/abs/1912.02074, arXiv:1912.02074 [cs]

14. Nanda, A., Mahapatra, A., Mohapatra, B., mahapatra, a.: Multiple comparison test by tukey’s
honestly significant difference (hsd): Do the confident level control type i error. International
Journal of Applied Mathematics and Statistics 6, 59–65 (Jan 2021). https://doi.org/10.22271/
maths.2021.v6.i1a.636

https://doi.org/10.1016/j.bpsc.2019.09.003
https://doi.org/10.1016/j.bpsc.2019.09.003
https://doi.org/10.48550/arXiv.2401.08819
https://doi.org/10.48550/arXiv.2401.08819
https://doi.org/10.48550/arXiv.2401.08819
https://doi.org/10.48550/arXiv.2401.08819
http://arxiv.org/abs/2401.08819
https://doi.org/10.48550/arXiv.1905.05380
https://doi.org/10.48550/arXiv.1905.05380
https://doi.org/10.48550/arXiv.1905.05380
https://doi.org/10.48550/arXiv.1905.05380
http://arxiv.org/abs/1905.05380
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097
https://doi.org/10.48550/arXiv.2007.02852
https://doi.org/10.48550/arXiv.2007.02852
https://doi.org/10.48550/arXiv.2007.02852
https://doi.org/10.48550/arXiv.2007.02852
http://arxiv.org/abs/2007.02852
https://doi.org/10.1287/opre.2021.2249
https://doi.org/10.1287/opre.2021.2249
https://doi.org/10.1287/opre.2021.2249
https://doi.org/10.1287/opre.2021.2249
https://doi.org/10.1162/1532443041827907
https://doi.org/10.1162/1532443041827907
https://doi.org/10.4103/aca.ACA_157_18
https://doi.org/10.4103/aca.ACA_157_18
https://doi.org/10.48550/arXiv.1906.04733
https://doi.org/10.48550/arXiv.1906.04733
https://doi.org/10.48550/arXiv.1906.04733
https://doi.org/10.48550/arXiv.1906.04733
http://arxiv.org/abs/1906.04733
https://doi.org/10.48550/arXiv.1912.02074
https://doi.org/10.48550/arXiv.1912.02074
https://doi.org/10.48550/arXiv.1912.02074
https://doi.org/10.48550/arXiv.1912.02074
http://arxiv.org/abs/1912.02074
https://doi.org/10.22271/maths.2021.v6.i1a.636
https://doi.org/10.22271/maths.2021.v6.i1a.636
https://doi.org/10.22271/maths.2021.v6.i1a.636
https://doi.org/10.22271/maths.2021.v6.i1a.636

16 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

15. Peng, G.: Po 04 testing normality of data using sas ®
(2004), https://www-semanticscholar-org.tudelft.idm.oclc.org/paper/
PO-04-Testing-Normality-of-Data-using-SAS-%C2%AE-Peng/
38c74f7d7f480df462c986905d3c1a941bc26dc8

16. Precup, D., Sutton, R., Singh, S.: Eligibility traces for off-policy policy evaluation. Computer
Science Department Faculty Publication Series pp. 759–766 (Jun 2000)

17. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken,
NJ, USA (1994). https://doi.org/10.1002/9780470316887, https://onlinelibrary.wiley.com/
doi/book/10.1002/9780470316887, first published: 15 April 1994

18. Rockafellar, R.T.: Augmented lagrange multiplier functions and duality in nonconvex pro-
gramming. SIAM Journal on Control 12(2), 268–285 (May 1974). https://doi.org/10.1137/
0312021

19. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 52(3/4), 591–611 (1965). https://doi.org/10.2307/2333709

20. Stephens, M.A.: Edf statistics for goodness of fit and some comparisons. Journal of the
American Statistical Association 69(347), 730–737 (1974). https://doi.org/10.2307/2286009

21. Thomas, P., Theocharous, G., Ghavamzadeh, M.: High-confidence off-policy evaluation.
Proceedings of the AAAI Conference on Artificial Intelligence 29(11) (Feb 2015). https:
//doi.org/10.1609/aaai.v29i1.9541, https://ojs.aaai.org/index.php/AAAI/article/view/9541

22. Uehara, M., Huang, J., Jiang, N.: Minimax weight and q-function learning for off-policy
evaluation (arXiv:1910.12809) (Oct 2020). https://doi.org/10.48550/arXiv.1910.12809, http:
//arxiv.org/abs/1910.12809, arXiv:1910.12809 [cs, stat]

23. Yang, M., Nachum, O., Dai, B., Li, L., Schuurmans, D.: Off-Policy Evaluation via the Reg-
ularized Lagrangian (Jul 2020)

24. Yang, S., Chen, R., Yang, Y., Hawkins, P., Brevdo, E., Qianli, S.Z.: Dice: The distribution
correction estimation library. https://github.com/google-research/dice_rl (2023)

25. Zhang, R., Dai, B., Li, L., Schuurmans, D.: Gendice: Generalized offline estimation of sta-
tionary values (arXiv:2002.09072) (Feb 2020). https://doi.org/10.48550/arXiv.2002.09072,
http://arxiv.org/abs/2002.09072, arXiv:2002.09072 [cs, stat]

26. Zhang, S., Liu, B., Whiteson, S.: Gradientdice: Rethinking generalized offline estimation
of stationary values (arXiv:2001.11113) (Nov 2020). https://doi.org/10.48550/arXiv.2001.
11113, http://arxiv.org/abs/2001.11113, arXiv:2001.11113 [cs, stat]

https://www-semanticscholar-org.tudelft.idm.oclc.org/paper/PO-04-Testing-Normality-of-Data-using-SAS-%C2%AE-Peng/38c74f7d7f480df462c986905d3c1a941bc26dc8
https://www-semanticscholar-org.tudelft.idm.oclc.org/paper/PO-04-Testing-Normality-of-Data-using-SAS-%C2%AE-Peng/38c74f7d7f480df462c986905d3c1a941bc26dc8
https://www-semanticscholar-org.tudelft.idm.oclc.org/paper/PO-04-Testing-Normality-of-Data-using-SAS-%C2%AE-Peng/38c74f7d7f480df462c986905d3c1a941bc26dc8
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316887
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316887
https://doi.org/10.1137/0312021
https://doi.org/10.1137/0312021
https://doi.org/10.1137/0312021
https://doi.org/10.1137/0312021
https://doi.org/10.2307/2333709
https://doi.org/10.2307/2333709
https://doi.org/10.2307/2286009
https://doi.org/10.2307/2286009
https://doi.org/10.1609/aaai.v29i1.9541
https://doi.org/10.1609/aaai.v29i1.9541
https://doi.org/10.1609/aaai.v29i1.9541
https://doi.org/10.1609/aaai.v29i1.9541
https://ojs.aaai.org/index.php/AAAI/article/view/9541
https://doi.org/10.48550/arXiv.1910.12809
https://doi.org/10.48550/arXiv.1910.12809
http://arxiv.org/abs/1910.12809
http://arxiv.org/abs/1910.12809
https://doi.org/10.48550/arXiv.2002.09072
https://doi.org/10.48550/arXiv.2002.09072
http://arxiv.org/abs/2002.09072
https://doi.org/10.48550/arXiv.2001.11113
https://doi.org/10.48550/arXiv.2001.11113
https://doi.org/10.48550/arXiv.2001.11113
https://doi.org/10.48550/arXiv.2001.11113
http://arxiv.org/abs/2001.11113

Mitigating double-dipping in behavior-agnostic RL 17

A Algorihms

Algorithm 1 Sample-splitting of the dataset with fold number K

1: procedure RANDOM_SPLIT(dataset D, training ratio α)
2: Retrieve total number of samples N from D
3: Calculate number of evaluation samples n1 ← α×N
4: Calculate number of training samples n2 ← N − n1

5: Retrieve all episodes from the dataset as a list
6: Shuffle the episodes at random ▷ to account for a fully random split
7: Initialize an empty list, F ▷ to store pairs of train-eval datasets
8: Calculate the size of each fold (subset) f ← N

K
9: for k ← 0 to K − 1 do

10: Determine start index s← k × f
11: Determine end index e← (k + 1)× f if k < K − 1 else N
12: Initialize a new off-policy dataset Deval with capacity n1 ▷ evaluation sample, Ik
13: Initialize a new off-policy dataset Dtrain with capacity n2 ▷ training sample, Ick
14: Add episodes from [s : e] to Deval

15: Add remaining episodes to Dtrain

16: Append the pair (Deval,Dtrain) to F
17: end for
18: return F
19: end procedure

Algorithm 2 Run training and estimation per each fold with fold number K

1: procedure RUN_TRAINING_ESTIMATION(estimator θ̌0, training dataset Dtrain, evaluation
dataset Deval, joint estimates J , fold index kindex)

2: Retrieve the target dataset, Dtarget

3: Initialize an empty list,R ▷ to store estimate values received over training
4: for each step from 0 to 10,000 do
5: Retrieve a batch of transitions T from Dtrain

6: Retrieve a batch of initial steps S from Dtrain and preprocess initial steps batch
7: Perform a training step for θ̌0 using S, T , and Dtarget

8: if step is a multiple of 100 or step is the last step then
9: Estimate average per-step reward r using Deval and Dtarget ▷ via Equation 7

10: Append estimate r toR
11: if step is the last step then
12: Update J by calling CALCULATE_JOINT_ESTIMATE(R, J , kindex)
13: end if
14: end if
15: end for
16: returnR
17: end procedure
18:
19: procedure CALCULATE_JOINT_ESTIMATE(running estimatesR, joint estimates J , fold in-

dex kindex)
20: AppendR to J
21: if kindex equals K then
22: Compute the mean θ̃0 of all the foldsR1,R2, . . . ,Rk in J ▷ via Equation 9
23: Log the results for θ̃0
24: end if
25: return J
26: end procedure

18 Yaren Aslan, Stephan Bongers and Frans A. Oliehoek

Algorithm 3 k-fold cross-fitting with fold number K

1: procedure RUN_CROSS_FITTING
2: Load the original dataset D from the directory
3: Retrieve a list of all the fold pairs F by calling RANDOM_SPLIT(D, 1

k
)

4: Initialize an empty list, J ▷ to store estimate values received per fold
5: for k ← 0 to K − 1 do
6: Split into training dataset Deval and evaluation dataset Dtrain using F [i]
7: Build a DICE estimator θ̌0(Deval,Dtrain) ▷ using µ̂0(Dtrain)

8: Update J by calling RUN_TRAINING_ESTIMATION(θ̌0, Dtrain, Deval, J , k + 1)
9: end for

10: return J
11: end procedure

Mitigating double-dipping in behavior-agnostic RL 19

B Performance Metrics

As suggested by Jacob in his research, following equations are used as performance
metrics for the study at hand [8]. Keep in mind the formula for variance calculation is
adjusted to account for the subtle fluctuations in the ground truth values such that the
the outcome is relative to the truth.

MSE =
1

S

S∑
s=0

[
θ̃s0 − θs0

]2
(10)

Bias =

∣∣∣∣∣ 1S
S∑

s=0

θ̃s0 − θs0

∣∣∣∣∣ (11)

Var =
1

S

S∑
s=0

[
θ̃s0
θs0

− θ̃s0
θs0

]2

(12)

where θs0 refers to ground truth obtained from the target policy and θ̃s0 refers to the
estimate value obtained from the model estimators, in the case of cross-fit estimators,
this value is the average over K folds. s here is for the seed number since per each seed,
the calculated final estimate value and the ground truth might differ.

	Mitigating double-dipping in behavior-agnostic RL

