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Reward machines were introduced in [4] as a way of defining temporally
extended (or “non-Markovian”) tasks and behaviors, and have been shown to
outperform state-of-the-art algorithms in such tasks. However, while learning
with a reward machine is guaranteed to converge to an optimal policy with respect
to the reward machine [5], in general reward machines provide no guarantees that
the resulting policy is optimal with respect to the task encoded by the reward
machine. Moreover, defining reward machines declaratively can be difficult and
prone to errors in non-trivial tasks. Illanes et al. in [2] used planning techniques
to address the latter issue: given an abstraction of the environment in the form
of a planning domain, reward machines are synthesised from a single (sequential
or partial-order) plan. Nevertheless, they did not tackle the issue of optimality.

In [6], which has been accepted for publication at ECAI 2024, we have im-
proved on the Illanes et al. approach by synthesising reward machines from the
set of all plans to solve the task. We showed that, under certain assumptions,
agents trained with our reward machines can learn an optimal policy for the
task, rather than just the reward machine as in the approach of Illanes et al.
Finally, we provided empirical proof of this by comparing agents trained with
our reward machines against agents trained with the reward machines of the
approach by Illanes et al. in three tasks from the CraftWorld environment
[1]. This is an extended abstract of such paper; we refer the reader to the full
paper for formal definitions and a thorough presentation of the results.

As we mentioned above, reward machines (RMs) are used to model tasks
that require agents to perform temporally extended behaviours. A reward ma-
chine is a finite state automaton that receives in input events that occur in the
environment in which the agent acts, updates its internal state, and produces
in output a reward signal. To synthesise our “maximally permissive reward ma-
chines” (MPRMs) we use planning domains. A planning domain comprises of
a set of planning states and actions, and can be seen as an abstraction of the
MDP in which the agent acts: planning actions correspond to sequences of MDP
actions which the agent learns to perform in the MDP. Tasks in a planning do-
main consist in reaching a goal planning state from an initial planning state via
planning actions. We can synthesise so-called “plans” that describe what actions
the agent should perform depending on the planning state. While Illanes et al.
propose an approach where they use a single plan to synthesise reward machines,
our maximally permissive reward machines are synthesised from the entire set of
plans to achieve the task, allowing for more flexibility. We formally showed that
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agents trained with our MPRMs are able to learn policies that obtain higher re-
wards than agents trained with the RMs of the Illanes et al. approach. Moreover,
under certain assumptions, we showed that the reward of the optimal policy of
an MPRM-trained agent is equal to the one of the optimal policy for the task.

We evaluated our approach by comparing it against the RMs obtained by
the approach of Illanes et al. from [2] in CraftWorld [1], a simplified version
of Minecraft. In the full paper we present the results from all the experiments
we have performed. Figure 1 shows the MPRM for the task to build a bridge:

Fig. 1: MPRM for the bridge task.

Fig. 2: Results of the bridge task.

the agent can decide to build either a grass or iron bridge. In both cases, the
agent has to collect wood, but can decide to do so either before or after it has
gathered the necessary iron or wood. On the other hand, a single plan for this
task would allow the agent to only build either an iron or wood bridge. Figure
2 shows the results of the experiments: as can be seen, agents trained with the
MPRM (orange line) achieve higher rewards compared to the other agents from
[2] (yellow and blue lines). This shows how, in this task, higher flexibility in
achieving the task leads to higher reward. Similarly, in the other tasks we have
observed the same; however, in the most complex task, we noticed that the agent
trained with the MPRM was slower in converging. We hypothesise that this is
due to the fact that, as the agent has more ways to achieve the task, it also has
to explore more to find a better policy.

To conclude, we have presented an approach where reward machines are
synthesised from a set of plans instead of a single one. Our approach allows
agents to achieve higher rewards at the cost of a slower convergence. As future
works, we would like to investigate the use of top-k planning techniques, e.g., [3],
to sample a diverse subset of the set of all plans which should hopefully speed
up training. Moreover, we would like to test our approach in more complex
continuous environments.
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