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Reinforcement learning (RL) has been applied in a variety of domains, such
as traffic signal control [1, 2], chemical structure prediction [3, 4], and radio
resource management [5, 6]. The successful training of RL agents often relies
on reward functions that are designed based on domain knowledge. Such re-
ward functions allow agents to receive immediate reward signals. Without those
handcrafted signals, the sparse rewards can result in RL algorithms suffering
from low sample efficiency [7, 8]. Numerous methods have been proposed to en-
hance sample efficiency of RL in sparse-reward environments, such as building
goal-conditioned reinforcement learning (GCRL) to provide intrinsic rewards
[9, 10, 11], applying hierarchical reinforcement learning (HRL) for improving
credit assignment [12, 13, 14], or employing reward machines (RM) to expose
the structure of reward functions [15, 16, 17].

In many scenarios, accomplishing a task involves the sequential comple-
tion of multiple subtasks. Especially in sparse-reward settings where immediate
feedback is scarce, evaluating action selection relies heavily on precise informa-
tion about past subtask completions and their specific order. However, previous
methodologies, such as GCRL and HRL, do not incorporate precise information
about the sequential order of subtasks into their policy learning frameworks.
On the other side, the recently proposed RM specify the reward function struc-
ture as an automaton [15, 18], which provides crucial information about the
sequential nature of subtasks. To construct a reward machine for a given set
of subtasks, previous methods have proposed to use automata learning to in-
fer a automaton to describe and exploit the reward function structure [19, 20].
However, learning an exact automaton from trace data is a NP-complete prob-
lem [21]. Although heuristic methods can be used to speed up the learning [19],
inferring an automaton that is representative to the reward structure relies on
trace data which is collected by an adequate exploration. When the exploration
of agents is inadequate, the automaton derived from the incomplete trace data
could be either inaccurate or partial, which leads to the RL algorithm learning
sub-optimal policies or even failing to learn.

Aiming at improving sample efficiency of RL in the above-mentioned sparse-
reward scenarios that involve sequential completion of multiple subtasks, we
propose a novel algorithm, which we call Automatically Learning to Compose
Subtasks (ALCS). It automatically learns the structure of the reward based
on a given set of subtasks (i.e. constituting the minimal domain knowledge of
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the task). The key idea of ALCS is to learn the best sequences of subtasks to
achieve the learning task. To accomplish this, we develop a framework with two-
level hierarchy of policy learning. The low-level policy learns to take the next
action toward completing a given subtask, while the high-level policy learns to
specify a subtask to be achieved next. There are two main characteristics of the
high-level policy learning. One is that the next subtask is selected based on the
exact sequence of completed subtasks, which considers precise information about
subtask sequences during learning. Another characteristic is that at the end of an
episode, the subtasks selected by the high-level policy are modified based on the
subtasks actually achieved by the low-level policy. This is necessary to consider
the impact of all achieved subtasks on the reward gains so that those achieved
subtasks can be reinforced as the policy selection. We verify the performance of
our method on 8 sparse-reward environments. The results show that when the
difficulty of tasks increases, our method produces a significant improvement over
the previous most sample-efficient methods.

Evaluations

We first compare our method with baselines on 8 environments from OfficeWord
and MineCraft domains to validate the superiority of ALCS. The results are
shown in Figure 1. The results show that algorithms that cannot utilize infor-
mation about subtasks already performed, such as Q learning, are unable to learn
the optimal policy in these domains. Our method significantly outperforms the
baseline methods (including the state-of-the-art methods JIRP and DeepSynth)
in all environments except Coffee where the reward structure is simple and easy
to explore. However, when the reward structure of the task becomes complex,
the sample efficiency of ALCS can significantly outperform all other methods.

(a) Coffee (b) Coffee and
Mail

(c) Collecting (d) Bonus

(e) Plant (f) Bridge (g) Bed (h) Gem

Fig. 1. Learning curves of various RL algorithms on 8 environments from OfficeWord
and MineCraft domains.
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