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Abstract. With Deep Reinforcement Learning (DRL) being increas-
ingly considered for the control of real-world systems, the lack of trans-
parency of the neural network at the core of RL becomes a concern.
Programmatic Reinforcement Learning (PRL) is able to to create repre-
sentations of this black-box in the form of source code, not only increasing
the explainability of the controller but also allowing for user adaptations.
However, these methods focus on distilling a black-box policy into a pro-
gram and do so after learning using the Mean Squared Error between
produced and wanted behaviour, discarding other elements of the RL
algorithm. The distilled policy may therefore perform significantly worse
than the black-box learned policy. In this paper, we propose to directly
learn a program as the policy of an RL agent. We build on TD3 and use
its critics as the basis of the objective function of a genetic algorithm that
syntheses the program. Our approach builds the program during train-
ing, as opposed to after the fact. This steers the program to actual high
rewards, instead of a simple Mean Squared Error. Also, our approach
leverages the TD3 critics to achieve high sample-efficiency, as opposed
to pure genetic methods that rely on Monte-Carlo evaluations. Our ex-
periments demonstrate the validity, explainability and sample-efficiency
of our approach in a simple gridworld environment.

Keywords: reinforcement learning · genetic programming · explainabil-
ity

1 Introduction

While Deep Reinforcement Learning (DRL) becomes a viable method to gen-
erate system controllers in an automatic manner [1, 2], their broader adoption
becomes hindered by the lack of transparency and explainability. Since the DRL
agent behaviour is computed by a black box model, such as a neural network,
the exact method used by the network to map a state to an action is often too
complex and beyond human comprehension [3, 4]. For control engineers who re-
quire specific guarantees from the controller (stability, robustness, ...) this lack of
transparency is unacceptable, leading to low adoption of DRL in their workflow
[5].
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A decade after the first successes of merging deep and reinforcement learning
[6], the emerging field of Explainable Reinforcement Learning (XRL) introduced
both local and global explanations within the different stages of training an
agent [7]. Whereas global explanation methods consider the policy as a whole,
and describe its behavior in every state at once (such as "avoid obstacles by
the North"), local explanations focus on a particular time-step, and offer expla-
nations such as "I went up because there is an obstacle in front". To be able
to generate good controllers, a human-readable global mapping from input to
output is needed [8]. To represent this, different types of explanations have been
considered, for instance rule-based [9]. These rules are queried as part of a rule
set or selected in a hierarchical way using decision trees [10]. Recently, program-
like representations have been considered, closely resembling regular computer
programs [11, 12, 13]. They contain the same building blocks as regular source
code (variables, control flow, operators, ...) with statements being executed in
a sequential order. This improves on both readability of the explanation as well
as adaptability by the user. Furthermore, if the program is expressed in a syn-
tax compatible with a Programmable Logic Controller (PLC), their deployment
onto actual hardware becomes straightforward [14].

The realization of programs within this Programmatic Reinforcement Learn-
ing (PRL) approach is still challenging. Current state-of-the-art methods such
as generative networks [12] and search-based templates [11] have shortcomings
in their ability to expand beyond a fixed set of possible solutions. To relax this
restriction, another approach is to take inspiration from the field of program syn-
thesis using Genetic Programming [13], motivated by the fact that producing a
program is an optimization problem without gradients available, and Genetic
Programming is both easy to apply and works well for those problems.

Contribution: In this paper, we improve on previous approaches closely
related to model distillation [15] by proposing a reward-driven optimization.
Instead of minimizing the error between the prediction error of the original
model and the distilled one, we opt for the exploitation of the critic network
in a TD3 agent [16] to compute the gradient of the program quality (average
Q-Values it encounters) with regards to actions predicted by the program. We
then steer the genetic algorithm to move the actions produced by the program
in the direction of that gradient.

We observe that it is possible to generate programs for simple a simple grid-
world environment, with highly promising sample-efficiency, policy quality and
explainability.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm used to solve se-
quential decision problems where each step is taken at a timestep t ∈ [0, tmax]
[17] wit tmax as time horizon. These problems are modeled as a Markov De-
cision Process (MDP) [18], a control problem scheme represented by a tuple
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(S,A, Pa, Ra) with S the state space, A the action space, Pa the probability
distribution of state transitions given action a and Ra the immediate reward
given after performing a in the environment. The transition between states is
described by Pa

ss′ . For the formulation of an MDP, we assume the transitions of
states to be Markovian, with Prob {st+1 = s′, rt+1 = r | st, at}. This means the
transitions of the states are not influenced by past transitions.

At any timestep in the MDP a state st is observed. The policy πt predicts
an action at for that observation. A new state of the environment st+1 ∈ S
is observed together with reward signal rt+1 ∈ R. This can consist of both
positive and negative values and is provided by the user as reward function
Ra

ss′ expressing the control objective. The objective of a Reinforcement Learning
agent is to learn a policy that maximizes the discounted sum of rewards R(τ) =∑
t
γtrt+1, with γ ∈ [0, 1[ as the discount factor.

2.2 Q-learning

A well-known approach to Reinforcement Learning, at the basis of our work,
is Q-Learning. The quality of an action at under a policy π is given by a Q-
Value Qπ(s, a), the expected return obtained by executing the at in st, and
then following policy π. The Reinforcement Learning agent iteratively refines
estimates of the Q-Values. The update rule is given by:

δ = rt+1 + γQ(st+1, at+1)−Q(st, at) (TD error)
Q(st, at)← Q(st, at) + αδ

with learning rate α ∈ ]0, 1]. Selecting an action at under the optimal policy
π∗(st) is obtained by at = argmaxa Q

∗(st, a) with Q∗ the converged optimal
Q-Value function.

2.3 Policy gradient

Q-Learning is a value-based RL method because it learns the value of actions
(how good they are). Another approach to RL is Policy Gradient, a policy-based
RL method, that directly learns the best parameters of a parametric policy πθ,
such that the agent achieves the highest-possible returns [19]:

Rt =

Tmax∑
t′=t

rt′

∇θ =
∑
t

Rt log π(at|st)

with Tmax the time-step at which one episode finishes. Policy gradient using∇θ is
applied after the episode, as it needs the Monte-Carlo sum of rewards obtained
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Fig. 1: Schematic overview Actor-Critic architecture. The critic provides Q-values
to the made interactions while the actor updates the policy via policy gradient
[16].

during the episode. After each application of Policy Gradient, any samples of
states, actions and rewards needs to be discarded and new ones need to be
collected by executing the updated policy in the environment. This causes Policy
Gradient to have low sample-efficiency.

Recent advances in policy-based methods led to Actor-Critic methods that
combine an explicit policy πθ with Q-Values (the critic). An example of Actor-
Critic algorithm is TD3 [20], graphically summarized in Figure 1. TD3 trains two
separate critic networks with SARSA, and then queries those for a gradient of the
actions in a batch of states: ∇aQ(s, ·). This gradient is then back-propagated
into the actor so its parameters are changed in a way that produce actions
that are evaluated as more promising by the critics. The use of multiple critics
rather than one is one of the improvements of TD3 on Deep Deterministic Policy
Gradient (DDPG) [21], reducing value overestimation.

2.4 Use of black-box models in RL

Traditionally, an RL policy is represented by a table of Q-values for discrete state
and action spaces. To learn in continuous spaces, a discretization function needs
to be applied. The resulting discretization error could be minimized by extending
the table size at the cost of memory, which explodes for multi-variable observa-
tion spaces. Replacing the table with an artificial neural network addresses this
issue since it is capable to generalize between encountered inputs and have been
considered universal function approximators[22].

However, due to their outputs being the result of a large number of simple
operations (additions, multiplications, simple non-linear functions), using neural
networks comes at the cost of losing model transparency, due to the sheer number
of operations and seemingly-arbitrary numbers appearing in neural networks. To
address this lack of explainability, the recent field of Explainable Reinforcement
Learning (XRL) has prompted many researchers to come up novel methods of
representing policies or critics [7]. Various algorithm generate explanations at
different moments (from the beginning, during or after training), and consider
either global or local explanations. In this paper, we focus on global explana-
tions, with the aim of producing a program that can be "copy-pasted" in a
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Programmable Logic Controller, read, understood and trusted by the control
engineer.

2.5 Genetic Programming

Optimizing via evolution is performed by executing iterations of the Genetic
Programming (GP) process or generation loop. The starting condition is a pop-
ulation of individuals with gi being the ith individual’s genome. This genome
represents model parameters to be optimized (polynomials, weights, ...) or an en-
coding of the model itself (program statements). It is up to the user to translate
the problem into a representation that fits the GP process, and one contribution
of our paper is the representation of programs as a sequence of real-valued genes.
A fitness function is defined, encapsulating the objective to be optimized in order
to solve the problem.

At the beginning of each generation, a number of individuals are selected in
order to perform crossover. These parents will exchange genetic material with
each other to produce offspring that share their characteristics. Afterwards, mu-
tation is applied to the whole population to encourage random exploration in
the genome. From this phase, advantageous behaviour can arise that is passed
through the generations. It is often used to look beyond the peaks of local op-
tima. In the selection phase, the fitness function is applied on each individual.
Those that perform worst are eliminated. The best scoring individuals survive
and will contribute to the next generational loop.

The optimization ends when the user-specified number of generations is met
or some performance threshold. The individual achieving the highest fitness is
considered as the best individual. However, in the context of generating pro-
grams, individuals with similar performances could also be considered if other
criteria are considered (program length, limited nesting, ...).

3 Related work

3.1 Programmatic Reinforcement Learning

In the recent past, several attempts have been made to synthesize programs
from an RL agent. Verma et al. introduced a template-based search over a set
of programmatic policies [11]. By using an oracle network from a trained DRL
agent, they steered the search for fitting variable values. However, this method
is not so flexible as the templates are user-defined at the start of training, which
could be non-optimal. Nevertheless, they showed the approach is well suited for
PID-like programs on both a racing game and a classic control environments.
Trivedi et al. propose to learn program embeddings using a variational autoen-
coder (VAE) [12]. This model first learns program embedding by reconstructing
source code using several loss functions. Afterwards, it can be used to directly
learn a programmatic policy by interacting in the environment and suggest-
ing candidate programs based on return maximization. Hein et al. incorporate
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genetic programming to generate programmatic trees that represent simple al-
gebraic equations [13]. Mutation of genes happen in the nodes of the trees while
crossover switches position between two subtrees within the parents, ensuring
the program is kept valid. This method was applied on both the CartPole and
MountainCar environment with well performing programs emerging at certain
complexity levels.

3.2 Genetic Reinforcement Learning

Genetic programming, besides evolving surrogate models, has been used to op-
timize other components of the Reinforcement Learning process. Niekum et al.
created new reward functions using PushGP, a stack-based programming lan-
guage [23]. Using a set of simple operators, they could formulate a better reward
for dynamic gridworld environments. This approach captures common features
among the different environments, allowing for hierarchical decomposition. Fi-
nally, Sehgal et al. used GP to optimize the hyperparameters of a DDPG agent
on MuJoCo robotic environments [24, 25].

4 Evolving programs

Our contribution builds on TD3 and Genetic Programming to implement the
actor of a Reinforcement Learning agent as a program, expressible in source
code. Our method differs from related work in two key aspects:

1. The program replaces the TD3 actor, and is optimized using gradients of
actions produced by the critics. This allows the actor to directly optimize
the returns obtained by the agent, as opposed to approximate some black-box
policy, leading to high-quality programs being produced in terms of reward.

2. The program is trained using gradients produced by the TD3 critics, not
by direct interaction with the environment. This makes our method several
orders of magnitude more sample-efficient than other programmatic RL ap-
proaches, that evaluate individuals in the Genetic Algorithm population by
performing rollouts in the environment.

We now introduce how we represent programs as a list of real values (the
genome), execute these programs, and integrate them as the actor of TD3.

4.1 Representing programs as sequences of real values

At the start of the training process, a population of genomes is initialized as a
two-dimensional array of size num_individuals× num_genes. Each ith genome
gi ∈ Gmax

min is a selection of num_genes random floats with values in the range
of ]−len(operators), max] from the gene space G which represents an encoding
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Fig. 2: Values in the gene space and their encoding. Positive values represent lit-
erals while negative values the different operators. Literals have a sign randomly
sampled at run time. The sign is fixed with abs or −abs.

of an arbitrary program. As shown in figure 2, we opted for a simple set of
operators, encoded as negative values, and literals of randomly-sampled sign,
encoded as positive values.

The sequence of operators and literals that make a program are interpreted
as the postfix notation of a program, directly linked to the evaluation of the
program by a stack machine. For instance, "3 2 sin +" represents sin(2) + 3 in
the usual infix notation: it pushes 3, pushes 2, replaces the 2 with sin(2), then
pops sin(2) and 3 and replaces it with sin(2) + 3.

Some operators have a limited domain, such as the square root operator. We
want to ensure that every program is runnable, and thus implement some default
value for the operators that have inputs outside of their domain. reciprocal,
or 1

x , resolves to the value 20 when x is between -0.05 and 0.05. exp clamps its
input to at most 10. For the square root, the return value is 0 should the operand
value be negative.

4.2 Optimization landscape

The representation of the programs has been designed with some specific aspects
that improve learning:

1. Abrupt changes in program behavior following a small mutation of a gene
makes the optimization landscape rigid, with many plateaus. To address this
issue, we add some stochastic aspects in the program 1.

2. To prevent random programs (when the agent has not learned yet) from
biasing the behavior of the agent, we ensure that random programs produce
an expected value of 0. We do that by ensuring that literals have no definite
sign (the sign is sampled at random at runtime), so they are not biased to-
wards positive values. Functions that have an image biased towards positive
or negative numbers also have a negated version. For instance, there exist
sqrt and -sqrt.

To smooth the optimization landscape, we introduce stochasticity in the map-
ping from real value to operators. Instead of casting the real value to an integer,
and using that integer to identify an operator, we identify the operator with:
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o = ⌊g + x ∼ U(−0.5, 0.5)⌋ (1)

with o the integer index of an operator, g the corresponding real-valued gene,
and x a value uniformly sampled from the -0.5 to 0.5 range. When programs are
evaluated, they are actually sampled and run 10 times, and the output of the 10
runs is averaged. Slowly changing the value of genes now has the effect of slowly
changing that average value, leading to a smooth optimization landscape.

4.3 Execution

To execute a program, a simple stack-based execution is used. Given is the input
observed state s, and a genome gi. The stack is pre-populated with [s]× 20, so
input values are available many times on the stack. This encourages operators
at the beginning of the genome to use state variables, leading to more state-
dependent and reactive programs. Genes are then interpreted as described in
the previous section: either as literals of random sign, or as operators sampled
as described above.

Literals are pushed onto the stack. When an operator is encountered, as many
values as required operands are popped from the stack. If a stack underflow
happens, the program is considered invalid and given a low fitness. When the
proper amount of operands is retrieved, the operator is applied and the result
pushed back on the stack.

At the end of execution, the result of the program is the current top of stack
value.

4.4 Critic-Moderated evolution

We provide an overview of our method in figure 3 together with pseudocode 1.
To perform the evolutionary loop, we use the PyGad library [26]. Used hyper-
parameters during the evolutionary loop can be found in appendix 1.

In this paper, we assume both the state space and action spaces to be con-
tinuous. When the action space has several dimensions, we learn one program
per action dimension.

Every policy_freq time-steps, we optimize the programs according to the
following procedure. We first use both critics of TD3 to produce improved actions
A∗ for a batch of states S. For this, we query the current programs for current
actions Â for S. We then ask the two critics for Q-Value estimates QA(S) and
QB(S). We compute an overall program quality metric by averaging the Q-Values
over QA and QB , and over states. This produces a single real value. All these
operations are performed with autograd enabled (using PyTorch in our case
[27]) which automatically computes gradients when performing backward passes
through the critics. We can then retrieve the gradient of that real value with
regards to the actions Â produced by the programs, leading to ∇A. Slightly
improved actions A∗ are then produced by computing A∗ = Â+∇A.
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Fig. 3: Our extension of TD3 with the evolution-based optimizer. With critic-
improved actions, the evolutionary loop is performed to optimize the population
of candidates.

Algorithm 1 Critic-Moderated Genetic Programming (CM-GP)
Require: TD3 critics QA and QB , population g, rollouts buffer, environment env
1: for n = 0 to n_steps do
2: g∗ = best_individual(g) ▷ [1] Realize best program
3: pg∗ ← g∗

4: buffer← collect_rollout(env) using pg∗

5: Sample rollout from buffer
6: train(QA, QB) with rollout
7: if step mod policy_freq = 0 then
8: S ← states(rollout)
9: Â← pg∗(S) ▷ Actions of the current best program

10: repeat 50 times ▷ [2] Compute improved actions
11: ∇A = mean(QA(S), QB(S))
12: A∗ = Â+∇A

13: Â← A∗

14: end
15: optimize(g, Â, S) ▷ [3] Generation of evolution
16: end if
17: end for

We now set Â← A∗ and repeat the process above 50 times. This forms a sort
of 50-step gradient ascent algorithm that, starting from the current output of the
programs, follows the TD3 critics to lead to better actions. This optimization
process on a critic is akin to the CACLA method proposed in [28]. We stop that
process if A∗ becomes too different from the actions produced by the programs
(when the L1 norm is above 1), akin to the trust region of TRPO proposed in
[29].
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The improved actions A∗ can now be used to optimize the programs with the
Genetic Algorithm. The fitness function on a batch of states S for an individual
gi in the population is the mean-squared error (MSE) between program actions
pgi(S) = Â and improved actions A∗ from the critic 2.

Fmse(gi, A, S) =
1

n

n∑
j=0

(
pgi(S)−A∗

j

)2 (2)

Fvar = state_variables(pgi)/|S| (3)
fitness = (1− Fmse)× Fvar (4)

with Fvar a fitness term that encourages programs to look at the state variables
(as opposed to producing constants). It is computed by looking at how many
state variables the program looks at, divided by the number of state dimensions.

The optimized programs can now be used to predict actions for new states,
as the TD3 agent continues. We stress that our method allows the programs
to influence exploration (as opposed to a posteriori distillation), and that the
Genetic Algorithm runs on values that do not require numerous rollouts to be
performed in the environment (thus allowing for high sample-efficiency). Our
contribution is graphically summarized in Figure 3.

5 Results

5.1 Environment

To validate our approach, we used an environment called SimpleGoal (fig. 4).
This navigation task is performed in a bounded continuous space of size 1 × 1
where the agent needs to take steps towards a goal area located at x < 0.1, y <
0.1. The initial starting position is random. The observation space is the current
(x, y) coordinate of the agent. The action space is in the range [−1, 1] and defines
the change in x and y for the next time-step, with dx = 0.1a0 and dy = 0.1a1. At
each timestep, the reward rt = 10∗(old_distance−new_distance) is calculated
based on progress in lowering Euclidean distance towards the goal. If the goal
area is reached, an additional reward of 10 is given and the episode terminates.
A forbidden area exists at the center of the environment, at coordinates 0.4 <
x < 0.6, 0.4 < y < 0.6. Entering this region terminates the episode with a reward
of -10. Otherwise, episodes terminate after 50 time-steps.

5.2 Training

To evaluate our method, we trained on several runs using nodes on HPC infras-
tructure. We got allocated 40 cores out of a a 2x 32-core AMD EPYC 9384X
node with 377 GB of memory. A run of 15.000 steps with our method took
roughly 8 hours.
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Fig. 4: The SimpleGoal environment with the green square the goal region and
red the forbidden region. The agent starts at a random position in the environ-
ment and tries to reach the goal as quickly as possible.

To compare to the methods that inspired ours, we set up the same experi-
ments for a vanilla TD3 agent and a pure Genetic Programming approach. The
TD3 algorithm is the original one from the CleanRL implementation [30]. Our
method builds on that TD3 implementation, hence this comparison allows to
measure how was TD3 before we introduce our programmatic policy. Learning
starts at the same timestep as our method, 2.000. No changes to the original
hyperparameters were made.

For the vanilla Genetic Programming (without TD3 critics, using only roll-
outs), we used the settings as described in table 1. During a learning iteration,
the best performing program stands in for the agent in the RL loop. When the
policy is updated, the GP process is performed and a new best program is se-
lected. In this case, the fitness function is the performance of one episode in the
environment. We already can note that the amount of interactions will increase
dramatically with an increase in both num_generations and num_individuals.
We show our results in figure 5.

The vanilla GP approach is sample-inefficient, needing an order of magnitude
more interactions with the environment to produce good programs. However,
when GP is steered by our critic-moderated approach, learning becomes drasti-
cally more efficient. This is because of the lack of environment interactions we
need to perform to calculate the fitness function since we do this based on the
produced gradients of the critic. TD3 has an even higher sample-efficiency. From
these results, we can conclude that:
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Fig. 5: Comparison between vanilla TD3 (blue), Genetic Programming (green)
and TD3 + Genetic Programming (ours, red). The intervals indicate the stan-
dard error across 5 runs.

– Our method produces explainable programs (see next section) at no cost
of final policy quality, and with much higher sample-efficiency than vanilla
Genetic Programming.

5.3 Produced programs

We took a selection of produced programs at the end and plotted their behaviour
in an arrow plot (fig. 6). The full programs of each plot are listed in the appendix.
At first, we can see that the arrows tend to point towards the goal area in the left
bottom corner. The distance of actions taken are quite small, leading to the agent
taking a large amount of steps to get to the goal relative to the total distance it
has to traverse. For almost all programs (except prog_1) the closer the agent is
at the goal the larger the step it will take towards it. Since the environment is
not strict on going out of range, the agent can take a big step towards the wall
and just move along an angle at its edge. Where prog_2 and prog_4 tend to
avoid the pitfall area, prog_1 and prog_3 both have the tendency to enter the
area from the right. In the former ones, we also notice a tendency to get stuck
in the bottom-right corner.

When we examine the program notations, we can observe some patterns.
First, programs tend to be quite complicated in their raw forms, with always-
true conditions and a general tendency for producing constants. However, auto-
mated or manual constant propagation can be used to make the programs more
readable. For all action variables we see the regular incorporation of sin and
cos, probably to have a bending curve effect on the action. In general, we notice
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Fig. 6: Arrow plots indicating a sample of policies on the gridworld. The longer
the arrow, the bigger the step taken in the direction it points to. Most programs
have a tendency to move towards the goal, most of them avoiding the forbidden
area.

both action variables produce negative value most of the time, resulting in a
direction towards (0, 0).

6 Conclusion

We introduced a new method, building on TD3 and Genetic Programming, for
generating programs out of Reinforcement Learning agents based on a critic
network. The programs are produced and tuned as part of the RL agent learning
(they are its policy). Our experiments show that the learned policies are of
comparable quality to black-box vanilla TD3 policies, with a sample-efficiency
several orders of magnitude higher than Genetic Programming without TD3.

Our current program representation is quite simple compared to other struc-
tures used in GP. Future research avenues include looking into tree-based or
graph-based program representations and their dedicated operations. We also
designed our algorithm such that the optimization landscape of the GP algo-
rithm is smoothed and without too many local optima. Future program repre-
sentations may further improve the search landscape, hopefully allowing for more
readable yet more expressive policies to be learned in challenging environments.

Finally, we note that the selection of operators is domain-dependent. Select-
ing a more suiting set of primitives would benefit the interpretability of the
produced programs by the end user.
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A Experimental setup

Hyperparameter Value
num_genes 5

num_individuals 50
num_generations 20

num_parents_mating 20
mutation_probability 0.1
parent_selection_type sss

crossover_type single_point
mutation_type random

random_mutation_min_value -10
random_mutation_max_value 10

policy_freq 128

Table 1: Used hyperparameters for the evolution strategy

B Operators

Operators Description Operands
abs / -abs Absolute value 1
sin / -sin Sine value 1
cos / -cos Cosine value 1
exp / -exp Exponent with max operand value 10 1

neg Negation of the value 1
+ Addition 2
* Multiplication 2

select Conditional with test and two cases 3
max Maximum of two operands 2
min Minimum of two operands 2
id Identity function 1

reciprocal Inverse value 1
trunc Truncation of the value 1

Table 2: Available operators
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C Produced programs

The produced programs are listed here in their raw form, and then after constant
propagation (given a domain of x in [−1, 1]).

prog_1
a[0] = -exp(max(-sin((x[0] if trunc(x[1]) > 0 else x[1])), x[0]))
a[1] = -cos(((((x[1] + x[0]) + x[1]) * x[0]) * x[1]))

prog_1 simplified
a[0] = -exp(x[0])
a[1] = -cos(((((x[1] + x[0]) + x[1]) * x[0]) * x[1]))

prog_2
a[0] = -cos(cos(x[1])) if abs(±66.31885466661134) > 0 else x[0]
a[1] = -abs(cos(max(cos(-sqrt(x[1])), x[0])))

prog_2 simplified
a[0] = -cos(cos(x[1]))
a[1] = -abs(cos(max(cos(-sqrt(x[1])), x[0])))

prog_3
a[0] = -exp(max((max(-abs(x[1]), x[0]) * x[1]), x[0]))
a[1] = -abs(reciprocal(-sqrt(((x[1] + x[0]) * x[1]))))

prog_3 simplified
a[0] = -exp(max((max(-abs(x[1]), x[0]) * x[1]), x[0]))
a[1] = -abs(reciprocal(-sqrt(((x[1] + x[0]) * x[1]))))

prog_4
a[0] = -cos(cos(x[1])) if exp(±64.18861262866074) > 0 else x[0]
a[1] = neg(cos(max(cos(-sqrt(x[1])), x[0])))

prog_4 simplified
a[0] = -cos(cos(x[1]))
a[1] = neg(cos(max(cos(-sqrt(x[1])), x[0])))
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