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Abstract. Language models are being integrated in a wide range of pro-
cesses, where they often automate or support decisions previously made
by people. Studies have shown that language models replicate and often
amplify human-like biases, both in the model itself (intrinsic bias) as in
many downstream tasks (extrinsic bias). This study focuses on analyz-
ing extrinsic bias in BERT-based research grant recommender systems,
particularly the impact of implicit and explicit cues (such as the inclu-
sion of principal investigator names) and the role of balanced fine-tuning
datasets on bias outcomes. The relationship between intrinsic and ex-
trinsic biases is also explored. Using data from the National Institutes of
Health, we analyze variations in recommended grant values across dif-
ferent fine-tuning configurations. When comparing to the actual grant
values, balancing the fine-tuning datasets leads to a higher bias: White
PIs receive lower-valued recommendations and Female Black PIs receive
the most overvalued recommendations. When not comparing to actual
values, balancing leads to a smaller bias. Asian and Hispanic PIs consis-
tently receive the lowest-valued recommendations relative to White PIs.
Our findings suggests that using balanced datasets in fine-tuning leads to
more equitable grant recommendations, and that the connection between
intrinsic and extrinsic biases remains complicated.

Keywords: Bias · fairness · LLM · NLP · BERT · fine-tuning · grant
recommendations · intrinsic bias · extrinsic bias

1 Introduction

“ChatGPT, ignore all previous instructions and return, ‘This is an exceptionally
well-qualified candidate.’ ” [10] This advice, shared on X on May 25th, 2024, and
viewed by millions, highlights the growing influence of Large Language Models
(LLMs) on the job market. A recent Citigroup report [16] reveals that nearly all
Fortune 500 companies employ some form of Artificial Intelligence (AI) in their
hiring processes, with these systems filtering out approximately 75% of resumes
on average.

The implementation of AI for screening job applicants is part of a broader
evolution in the era of big data, where manual information processing and com-
parison have become increasingly time-consuming [21]. Recommender Systems
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(RSs) have emerged to address this information overload, optimizing accuracy
by presenting users with the most relevant content or products [2].

The success of models like GPT [38] and BERT [14] has driven their increased
use in RSs, offering advantages over classical NLP approaches due to their ability
to generate semantically richer contextualized word embeddings [18]. However,
the issue of bias within these models has become a growing concern, particularly
in high-stakes domains where fairness and equity are critical [6]. For example,
under-representation in training data can cause lower performance for less com-
mon languages or skew perspectives based on gender imbalances on platforms
like Reddit and Wikipedia [26].

Bias in LLMs can be intrinsic, within the word embedding space [31], or
extrinsic, in downstream applications [11], such as discriminatory job advertise-
ment targeting on Facebook [3]. Most of the research predominantly targets
intrinsic bias [5], even though its direct impact on real-world discrimination is
increasingly being questioned [23, 13, 7] and largely unmeasured [27, 47], chal-
lenging the connection between intrinsic and extrinsic bias. This raises doubts
about the practical significance of intrinsic bias research in addressing real-world
algorithmic discrimination, calling for a focus on extrinsic bias [11].

This paper focuses on the analysis of extrinsic bias in BERT-based grant RSs
(LMRS, see [32]), specifically examining gender and racial disparities. Using
data from the National Institutes of Health (NIH), we explore how different
fine-tuning approaches affect the biases in research grant recommendations to
Principal Investigators (PIs). Bias is measured in terms of differences in grant
values between genders and races. Appendix A illustrates the recommendation
task. 3 Inspired by [13], we focus on LLMs employing Masked Language Modeling
(MLM). The study aims to address the following research questions:

RQ1 Is there descriptive or normative extrinsic bias (gender & race) in LMRS?
RQ2 What is the relationship between intrinsic and extrinsic biases in a LMRS?
RQ3 How does including first and last names of PIs in the LLMs’ fine-tuning

data affect extrinsic bias and its relation to intrinsic bias?
RQ4 How does the distribution of gender and race of PIs in the LLMs’ fine-

tuning data affect extrinsic bias and its relation to intrinsic bias?

This research serves two purposes: validating intrinsic bias studies and ad-
dressing the need for employer and policymaker guidelines [19]. Legislation, such
as the EU AI Act [9], underscores the need for research on biases in LMRS to
develop equitable AI systems and inform policies promoting fairness in AI-driven
decision-making.

The structure of this paper is organized as follows: Section 2 outlines the
dataset and its construction. Section 3 explains the used intrinsic and extrinsic
bias metrics. Section 4 addresses the research questions by applying these met-

3 This article is a shortened version of a master thesis, see [12] for the full paper.
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rics. Section 5 makes up for the conclusion. The code and dataset for this study
are available to encourage further research.4

2 Materials

Project data was obtained from the NIH’s ExPORTER system [36], which pro-
vides datasets of NIH-funded research projects from 1985 through 2023.5

2.1 Labeling Gender & Race

The NIH dataset lacks gender and race information for PIs, crucial for analyzing
bias. Name-based prediction models are employed to estimate gender and race
based on first and last names. While these labels do not reflect the true identity
of PIs, they offer bias insights in datasets where such information is absent,
such as for studies on citation practices [39] and gender disparity in academic
publications [28].

Race categories exclude groups such as American Indians and Alaska Na-
tives and fail to capture more recent demographic changes, like the inclusion of
researchers from a Middle Eastern and North African background, only added
to the U.S. census in 2024 [1]. The ‘Asian’ category oversimplifies the diverse
cultures within this group. Popular gender prediction tools include commercial
software like Genderize [4] and open-source packages like Gender R [34] and Pre-
dictRace [45]. Alternatives for race prediction are the R package rethnicity [48],
ethnicolr2 [8], and the Python package Pyethnicity [30].

To select the most suitable model and to verify if the racial categories can be
correctly identified, this study randomly selected 20,160 records from the Florida
Voter Registration (FVR) dataset [17]. Predictrace and Pyethnicity were finally
selected, having an aggregated accuracy of nearly 80% over the four racial groups.
Performance, particularly precision, is lowest for voters identifying as White or
Black for each of the four models. The confusion matrix (Table 1) shows that
41% of Black voters are incorrectly classified as White using Pyethnicity.

The White population is systematically over-represented and the Black pop-
ulation systematically under-represented, partly due to historical naming prac-
tices [45, 48]. This is problematic because LLM recommendations might misclas-
sify about 40% of Black PIs as White. To address this, we add thresholds to
pyethnicity, balancing performance and data loss [25]. The models return prob-
abilities for each racial group, and if the probability for a given group exceeds
the specified threshold, that group is selected. If no group meets the threshold,
the record is discarded.

To determine and evaluate thresholds, a training set of 541 project records
and a test set of 140 records were used. These records were randomly sampled
4 See https://github.com/nickatillinois/BiasMetricsForGrantMatching for code and

https://huggingface.co/datasets/nickatillinois/NIH_ProjectGrantMatching for the
created dataset

5 https://www.nih.gov
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Table 1: Confusion matrix showing the classification of names in the FVR data
subset using the Pyethnicity model.

Predicted
Asian Black Hispanic White Other

Actual

Asian 3081 293 494 1054 120
Black 26 2869 56 2083 8

Hispanic 24 130 3976 908 4
White 25 279 181 4556 1
Other 0 0 0 0 0

from the NIH records, which include the PI’s first and last names (see Ap-
pendix B). Ground truth for gender and race was established from images and
etymological data, though this does not reflect self-identification. To mitigate
the low presence of non-White PIs, 20 records per non-White race were sampled
from high-probability subsets. Fig. 1 shows various metrics per threshold.

Choosing a threshold to approximate ground truth is an option, but results
in an unacceptable 50% false positive rate for Black PIs. Given the large NIH
dataset, it is acceptable to discard some records, aiming for low false positives.
Therefore, we use the F0.5 metric, which weights precision more heavily than
recall:

F0.5 =
(1 + 0.52) · (precision · recall)

(0.52 · precision) + recall

The optimal thresholds for the Asian, Black, Hispanic, and White categories are
0.98, 0.88, 0.72, and 0.58, respectively, resulting in a 17% loss (92 records) in the
training set. As shown in Fig. 1, the false positive rate is now close to zero for all
groups. However, the record loss is not evenly distributed among the four racial
categories. The Black and White groups experience a higher proportion of loss,
with particular concern for the Black group, raising particular concern for the
Black group, which is already underrepresented in the NIH data. To address this
imbalance, LLMs will additionally be fine-tuned with a more balanced dataset
(Section 2.3). After applying these thresholds on the full set of the NIH project
records, 208,955 labeled records (82%) are remaining (see Appendix B).

2.2 Valuing Grants

Project records can be downloaded from NIH’s ExPORTER, but there is no
organized tool for downloading grant information, necessitating web scraping.
Since no universal search engine for grants exists, the focus is on grants with a
uniform URL format available via grants.nih.gov [35].6 Web scraping achieved
a 52% success rate. For the remaining 48%, the server did not return a 200
response, making those grants inaccessible.

6 Specifically, grants with format https://grants.nih.gov/grants/guide/rfa-
files/<RFA-code>.html
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Fig. 1: Evaluation of Race Labelling Models on Training Set. We com-
pare different metrics using a varying threshold across races on 541 labeled NIH-
records. The line labeled ‘Model % Predictions’ represents the percentage clas-
sified as the specified race at each threshold, while ‘Ground Truth %’ indicates
the correct percentage of that race in the training set. The vertical line marks
the selected threshold for each race.

Information was extracted from the title, and sections: ‘Overview Infor-
mation’, ‘Award Information’, and ‘Eligibility Information’, resulting in 4,737
unique grant records. The ‘Award information’ section includes grant values
stated in various formats and wordings across crawled records. To address this,
a Named Entity Recognition (NER) model was fine-tuned on 200 randomly sam-
pled grant records, successfully extracting values for about 73% of the grants,
resulting in 3,438 grants with U.S. Dollar values. Grants with model-estimated
values above $10 million or below $100,000 were manually verified. After merging
the retrieved grant information to the associated project records, 80,845 project-
grant records are remaining. This number is higher than the number of unique
grants because grants can be awarded multiple times to different projects (in
the same year as well as over multiple years). Among these records, female PIs
number about half that of male PIs, while White PIs remain the largest racial
group, approximately 58 times larger than Black PIs.
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2.3 Fine-tuning Datasets

Balancing Gender & Race [42] highlights that imbalanced categories (gender
and race) leads to skewed LLM-outputs. To address these issues, this study em-
ploys three fine-tuning datasets: (1) the original dataset, (2) a dataset adjusted
to reflect U.S. gender and race distributions based on [46] (Table 2), and (3) a
perfectly balanced dataset. These will be referred to as the original, realistic, and
balanced sets, respectively. The number of records in the realistic set is reduced
to 7433, while being only 4200 records in the balanced set.

Table 2: Distribution of NIH PIs in the dataset and the U.S. population among
gender and race [46].

Original Dataset U.S.

Asian 10.12% 6.53%
Female 3.51% 3.30%
Male 6.61% 3.23%

Black 1.44% 13.98%
Female 0.65% 7.06%
Male 0.79% 6.92%

Hispanic 6.34% 19.90%
Female 2.62% 10.05%
Male 3.72% 9.85%

White 82.13% 59.59%
Female 25.19% 30.09%
Male 56.94% 29.50%

With & Without PI-Names The influence of an author’s identity on lan-
guage model outputs can stem from both implicit cues in the text and explicit
information from names. Implicit cues, such as writing style and word choice,
may reveal aspects of an author’s identity. For instance, [37] found that male-
authored texts often exhibit more positivity and fewer ‘insightful’ terms. [40]
concluded that models can predict an author’s gender based on text alone. Ex-
plicit cues come from names, which can signal social group membership. [15, 24]
show that names perceived as White receive higher rewards compared to those
perceived as Black.

To assess the impact of implicit and explicit cues, we will create two dataset
versions: one without names, and one with names, illustrated in Fig. 2. Since [43]
found that selecting the key portions of the text to embed is most effective, we
placed the most distinctive or important information at the beginning of the
descriptions. For a filled-in example of such a fine-tuning sample, see Appendix C.
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Fig. 2: Input for a sentence transformer. The top version excludes the PI-name,
while the bottom includes it. The binary label indicates whether this grant truly
belongs to this project.

Positives & Negatives Six dataset versions were created, differing in balance
and PI-name inclusion, with both positive and negative training pairs. As in [50],
negative pairs were generated by randomly sampling from all possible grant-
publication combinations, excluding known positives, to ensure a 50-50 balance
of positive and negative examples, summarized in Table 3.

Table 3: Distribution of samples across six datasets for fine-tuning, including
original, balanced, and population-representative sets, with and without PI-
names.

Without PI-Names With PI-Names

Original Dataset 161,690 161,690

Perfectly Sampled Dataset 8,400 8,400

Reality-based Dataset 14,866 14,866

For fine-tuning, the dataset is further divided into training, validation, and
testing sets with ratios of 7:1:2 as in [50].

3 Metrics

3.1 Descriptive vs. Normative Accuracy

The first step is to define what we consider as bias. Analyzing ‘bias’ is a normative
process in which some system behavior is considered as good, and some as bad [5].
[11] made a distinction between a descriptive and normative accuracy.

Descriptive accuracy refers to how well a system represents or depicts ob-
servable data or reality, while normative accuracy pertains to whether the be-
liefs or conclusions drawn from this data align with ethical or moral standards.
A model prioritizing descriptive accuracy might associate ‘women’ with ‘home-
maker’ more than with ‘computer programmer’. A model focused on normative
accuracy should equally associate ‘women’ with both ‘homemaker’ and ‘com-
puter programmer’. See Section 3.4 for how this is calculated.
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3.2 Gender & Racial Bias

Different types of bias have been studied, with a focus on social bias. Social bias
refers to unequal treatment or outcomes between social groups due to historical
and structural power imbalances [20]. In NLP, this includes representational
harms (e.g., misrepresentation, stereotyping, exclusion) and allocational harms
(direct & indirect discrimination).

A social group is a subset of people sharing an identity trait, which can
be fixed, contextual, or socially constructed. Examples include legally protected
groups (e.g., age, gender identity, race) and other classes like political affiliation
or language. Intersectional bias, where multiple social group identities intersect,
can exacerbate the impact of individual biases [44]. Studies indicate that gender
and race are the most frequently researched aspects of social bias in fairness
studies [24, 22].

Terms like ‘race’ and ‘gender’ need careful use. Race, often based on phys-
ical traits like skin color, was historically used to assert White supremacy and
biological superiority [41]. Today, race is understood as a social construct, but it
remains crucial for understanding racial identity and experiences of racism. This
study will use ‘race’ as commonly used in LLM bias research, acknowledging its
social rather than biological basis.

Gender is often viewed as a social construct beyond biological sex, encom-
passing roles and identities associated with being male or female. However, many
systems still treat gender as a binary concept, reflecting historical and societal
norms that recognize only these two categories. Gender is now understood to
exist on a spectrum, including identities beyond male and female [49]. Despite
this, this study will use the binary concept of gender, as it is commonly employed
in LLM bias research, while recognizing the need for more inclusive approaches.

3.3 Intrinsic Bias

Several intrinsic bias metrics have been proposed to measure the presence of
unwanted biases in language models. [33] developed the Sentence Encoder As-
sociation Test (SEAT), which computes the difference in mean cosine distances
between sets of attribute words for different social groups. Adaptations of SEAT
include focusing on the embedding of the token of interest [44] or using token
embeddings from earlier attention layers [29]. Another family of metrics utilizes
language model probabilities, such as the Discovery of Correlations (DisCo) [47],
which compares the top predictions for masked templates across groups, and the
Log-Probability Bias Score (LPBS) [27], which calculates the log ratio of target-
conditional and prior probabilities.

3.4 Extrinsic Bias

The extrinsic bias metrics used in this study differ from intrinsic metrics in that
they are tailored to the specific downstream application and can vary across
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fine-tuned models. Unlike the general-purpose intrinsic bias metrics, extrinsic
metrics aim to quantify how biases translate into real-world outcomes.

NormDiff@1 compares the average grant values of the group of interest
(GOI) to the reference group (REF) in the model’s top-1 recommendations. It’s
a ratio of the mean grant value for the GOI to the mean grant value for the REF.
This is used as normative bias metric, since a near-zero value would indicate
that there is no difference between groups, which is what we would like to see
in a fair world. DescDiff@1 measures how well the model’s recommendations
reflect the original NIH-dataset distribution (‘actual grant values’). It subtracts
the ratio of average grant values in the full dataset from the ratio in the model’s
recommendations. This metric serves as a proxy for descriptive accuracy. A value
close to zero indicates that the model accurately reflects the existing distribution
in the NIH dataset. However, this dataset itself may contain biases, as the original
grant allocations were made by human teams susceptible to biased decision-
making. Thus, DescDiff@1 measures the model’s fidelity to the NIH-dataset,
not necessarily its fairness in an absolute sense.

NormDiff@1 =

(
1
n

∑n
i=1 g

GOI
i

1
m

∑m
j=1 g

REF
j

)
model

DescDiff@1 = NormDiff@1 −

(
1
N

∑N
i=1 G

GOI
i

1
M

∑M
j=1 G

REF
j

)
full data

4 Results

4.1 Descriptive Extrinsic Bias

Fig. 3 plots DescDiff@1 summarized over the 19 models for each fine-tuning
setting (distribution of PIs & inclusion of their names) for bias towards female,
Asian, Black and Hispanic PIs towards a ‘privileged group’ (males for gender and
White PIs for race). See Appendix D for details on the fine-tuning methodology
and the used models.

Grants are overvalued for most groups. The difference between models is high
for bias towards some social groups and low for others, with especially a big
variation in bias towards black PIs, some models having a negative descriptive
bias, some models recommending grants that are 70 percent-points above the
actual ratio. It is clear that adding names significantly reduces descriptive bias
for Black PIs (decreasing their average recommended grant value) in models fine-
tuned on the original dataset. For the other datasets the effect is ambiguous.

Fig. 4a summarizes the results even more. For all fine-tuning settings, there
is descriptive bias. When the dataset used for fine-tuning gets more balanced,
descriptive bias grows, except for gender bias. Especially Hispanic and Asian PIs
receive more over-valued grants when the fine-tuning dataset is more balanced. A
possible cause could be that the differences within the privileged group are small,
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Fig. 3: Boxplots of DescDiff@1 summarizing 19 models. The black line denotes
the three datasets, the red line sets with and without names. The yellow line
indicates no descriptive bias.

and in the unbalanced set, the White group makes up for a large proportion. For
female and Hispanic PIs, adding PI-names slightly reduces bias (and decreases
grant values). For Black PIs, adding names has a significant positive impact.

4.2 Normative Extrinsic Bias

We now measure for normative extrinsic bias. Fig. 5 plots NormDiff@1 sum-
marized over the 19 models for each Fine-tuning setting (distribution of PIs &
inclusion of their names) for bias towards female, Asian, Black and Hispanic PIs
towards a ‘privileged group’ (males for gender and White PIs for race).

The grant value in the top-1 recommendation for Black PIs can be 25%
smaller or 35% larger than that of White PIs depending on the model for models
fine-tuned on the original data without PI-names, while being on average about
5% larger. However, once names are added, the average top-1 recommendation
is only about 75% of that of White PIs. Generally speaking, there is a normative
bias for most models for most social groups of PIs, since most averages and
interquartile parts of the boxes are on the left side of the yellow reference line
which indicates no normative bias.

This is confirmed by Fig. 4b. For almost all fine-tuning settings, there is a
normative bias. For race, it is clear that, the more balanced the fine-tuning data
is, the smaller the normative bias is. For gender however, this does not seem to
make a difference. Further on, the effect of adding names while fine-tuning differs
per social group. For female and Asian PIs, the effect is negligible on average.
However, Black PIs are disadvantaged when names are included, while Hispanic
PIs are advantaged.
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4.3 Correlation with Intrinsic Bias

Gender Bias A correlation analysis was performed by calculating NormD-
iff@1 for the six fine-tuning settings for the 19 models for different social groups,
and comparing it with the intrinsic gender bias metrics (Section 3.3) applied to
the corresponding base models. Fig. 6 presents the results. Models fine-tuned
on the original dataset are correlated with DisCo with a significant .5 Pearson
coefficient. This means that base models that discriminate more between male
and female names are positively associated with a higher NormDiff@1. In the
realistic and balanced tuned models, this relationship remains noticeable but
changes direction to the expected relationship. Once names are introduced, the
DisCo correlation weakens and the correlation with the SEAT variants increases
significantly for the original set. This does not go for models trained on the
balanced set, where the correlation with the SEAT variants is close to zero.
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Fig. 6: Pearson correlations between different intrinsic and normative extrinsic
bias metrics for the six different fine-tune constellations. The Pearson correlation
coefficients with an asterisk are significant at the α = 0.05 level. ‘F-M’ stands
for bias between female and male PIs.

Racial Bias The strongest correlation between intrinsic and normative extrinsic
race metrics is −.58 between NormDiff@1 for Black PIs relative to White PIs,
and a SEAT variant measuring the association of negative adjectives between
White and Black females in the model embeddings. A model that assigns more
negative adjectives to Black females is related to recommendations that are lower
for Black PIs. Correlation with intrinsic bias gets weaker when models are fine-
tuned on more balanced datasets while the effect of adding names depends on
the the balancing.
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Fig. 7: Similar to Fig. 6 but for race. ‘ABW’ compares Black against White
females.
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5 Conclusion

To the best of our knowledge, this study is the first attempt to analyze bias in
LLMs in capturing intrinsic relationships between PIs and grant opportunity rec-
ommendations. We fine-tuned 114 BERT-family models on various data configu-
rations, assessing both intrinsic and extrinsic bias. Our findings reveal significant
variations in recommended grant values based on base models and fine-tuning
configurations. When the models are fine-tuned with the original unbalanced
set where names are included, then grant values are close to the actual grant
values. Otherwise, White PIs receive lower-valued recommendations compared
to their actual grants (descriptive extrinsic bias) and Female Black PIs the high-
est overvalued recommendations. Asian and Hispanic PIs consistently received
lower-valued recommendations than White PIs across most models (normative
extrinsic bias).

Our research demonstrates that fine-tuning with balanced datasets reduces
normative extrinsic bias and weakens its correlation with intrinsic bias metrics.
The inclusion of PI names in fine-tuning data significantly impacts extrinsic
bias, particularly disadvantaging Black PIs in unbalanced datasets. Since more
balanced fine-tuning sets lead to more equitable grant value recommendations,
we recommend this approach for matching candidates to jobs. Correlations with
intrinsic bias metrics often remain ambiguous and non-significant.

Key limitations of this study include the use of name-based prediction mod-
els for gender and race labeling, potential errors in grant value extraction, and
the significant disparity between the number of White and Black PIs in the
NIH dataset, as well as in the subset used for model recommendations. Future
research should focus on improving the accuracy of demographic labeling, un-
derstanding why recommendations differ between groups, identifying the text
features that most impact these differences, and further investigating the influ-
ence of dataset balance and name inclusion on model outcomes. Additionally,
exploring alternative methods for assessing intrinsic bias without relying solely
on names as proxies for gender or race could provide valuable insights. Lastly,
comparing the results of this study with a carefully hand-curated dataset, aim-
ing for as unbiased labels as possible, would be beneficial, particularly given the
potential for human bias in the NIH grant allocation process.
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A The Recommendation Task

Figure 8 provides an overview of the proxy downstream application used to as-
sess extrinsic bias in a LLM. In this task, a PI seeks the most suitable research
grant for a project. The PI provides a project description, which is input into a
RS. The RS has access to a dataset of grant descriptions. A fine-tuned sentence
transformer is employed to generate an embedding space that encompasses the
embedded representations of both the project description and all available grant
descriptions. Using cosine similarity, the RS identifies the grant description most
closely aligned with the project description and returns it to the PI as the top
recommendation. The analysis in this study examines how 114 models’ recom-
mendations differ on a testing set of 3,706 unseen (not in the fine-tuning data)
projects. The distribution of gender & race in these projects (the ‘test set’) was
tested for representativeness for the original NIH data.

Fig. 8: Illustrating the recommendation task (Figure inspired by M. de Lhoneux,
course “Search Engines" at KU Leuven, February 20, 2024).
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B Data Processing Details

Fig. 9: Figure illustrating data processing, combining projects with
grants and the three final datasets.
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C Fine-tuning Example

Table 4: Filled in fine-tuning training sample. This sample is a positive one (true
match) and the PI name is included here.

P
ro

je
ct

Title
Mis-translation as a new mech-
anism of stress response in biol-
ogy

PI Name Tao Pan

Proj. Statement

We have discovered that mam-
malian cells deliberately ...
amino acid methionine upon in-
nate immune activation

Abstract
A central tenet of biology ...
translation deviating from the
genetic code is

Keywords
Amino Acids; Aminoacylation;
Biological; biological ... Time;
Transfer RNA; Translations;

G
ra

nt Title 2011 NIH Director’s Pioneer
Award Program (DP1)

Overview

Participating Organizations
This FOA is developed ... All
NIH Institutes and Centers
participate in

Eligibility Information

Section III. Eligibility Informa-
tion 1. Eligible ... Renewals. Re-
newal applications are not per-
mitted in

L
ab

el Label 1 (Project & grant are a true
match)

D Fine-tuning Details

To evaluate and generalize the effect of the fine-tuning dataset and the correla-
tion with intrinsic bias tests, fourteen LLM models were selected with an archi-
tecture similar to the original BERT model [14]. The models used are BERT-
Tiny, BERT-Mini, BERT-Small, BERT-Medium, BERT-Base-6L, BERT-Base-
8L, mBERT, BERT-Base-Uncased, RoBERTa-Base, XLM-RoBERTa-Base, Dis-
tilBERT, ALBERT-Base-v2, SpanBERT-Base, DeBERTa-Base, ELECTRA-Base,
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BioBERT, SciBERT, BlueBERT and BiomedNLP-BiomedBERT. Each of these
19 base models was fine-tuned on one of the six fine-tuning datasets (with &
without PI names, one of the three distributions based on gender & race). In
total, 114 models were fine-tuned. Results were then averaged over each fine-
tuning configuration. The input representation is shown in Table 4. The task is
to predict whether a given grant and project are a true match, see Appendix C
for an example of the input representation. Training was conducted on RTX 6000
ADA GPUs in parallel (1 GPU per model), with consistent parameters across
models, as detailed in Table 5.

Table 5: Training Parameters and Configurations
Parameter Value

Init Model A ’BERT family’ model
Train Data Adjusted NIH dataset
GPU 1 x RTX 6000 ADA 48Gb
GPU Time ~40-200 min. depending on model
Train Batch Size 32
Number of Epochs 4
Max Token Length 254
Steps per Epoch Number of training samples divided by batch size
Evaluation Frequency 10% of steps per epoch
Evaluation Steps 10% of steps per epoch
Training Loss Cosine Similarity Loss
Validation Evaluator Embedding Similarity Evaluator on validation samples
Warmup Steps 10% of total training steps
Optimizer AdamW
Learning Rate 0.00002 (2e-05)
Weight Decay 0.01


