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Abstract. To the question of missing values in image data, MisGAN
[16] provides an answer based on a Generative Adversarial Network
(GAN). Traditionally, in the study of missing data, three main underlying
mechanisms are distinguished: MCAR, MAR and MNAR. The MisGAN
paper assumes that the missingness follows the MCAR mechanism and
empirically shows that MisGAN performs well on image data generated
with MCAR missingness, leaving MAR and MNAR as future work. In
this paper, we propose a method for generating MNAR missingness in
the MNIST dataset: we let higher gray-scale pixel values have a higher
probability of being missing. In addition, we vary the extent to which
these missingness probabilities depend on the pixel values and investigate
the effect of simultaneously occurring mechanisms. Indeed, we find that
MisGAN is not working quite as well on MNAR data as it is on MCAR
data. In addition, we make auxiliary comments about result evaluation
using the Fréchet Inception Distance, and discuss the difficulty of defin-
ing a pixel-level MAR missingness mechanism in image data.

Keywords: Missing Data in Images · Data Amputation · MNAR · Miss-
ingness Mechanisms · Generative Adversarial Networks

1 Introduction

Many data mining methods simply assume that we have a large, complete dataset
available for analysis. In real life, one often comes across missingness in the data
due to failure of data collection or lost records. If the missingness is not handled
well, there is a large probability that the incomplete data leads to incorrect or un-
realistic results. A number of studies have been conducted on missing data impu-
tation, to impute the missing values with plausible data. Various techniques deal-
ing with machine learning and deep learning have been studied [15,30]. Among
them, the most frequently presented models for image data are those based on
Generative Adversarial Networks (GANs) [11]. Each of the GAN-based models
focuses on improving some specific aspect of missing data imputation [15]. One

⋆ These authors have contributed equally to this paper.
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of these models is MisGAN [16], a GAN-based framework for learning from com-
plex, high-dimensional, incomplete data. MisGAN performs quite well on data
in which the missingness is independent from observed or unobserved informa-
tion, better known as the Missing Completely at Random (MCAR) mechanism.
Although the future work section of [16] suggests that the framework could also
work for missingness that is dependent on the missing or non-missing values, no
results are shown. As the underlying mathematical model does not necessarily
hold when allowing missingness to be dependent, it remains an open research
question to see whether MisGAN can indeed be successfully applied under miss-
ingness mechanisms other than MCAR. In this paper, we empirically explore
MisGAN’s performance on data where the missingness is generated through the
Missing Not At Random (MNAR) mechanism.

2 Background and Related Work

Consider dataset D = {(xi,mi)}i=1,2,...,N to be a collection of N partially ob-
served samples. Each sample consists of a partially observed data vector x ∈ Rn

and a missing data indicator m ∈ {0, 1}n indicating which entries in x are ob-
served; md = 1 if xd is observed and md = 0 if xd is missing, for d = 1, 2, ..., n.
It is thus possible to split the data into xobs and xmis, representing the observed
and missing values, respectively.

2.1 Missing Data Mechanisms

In the study of missing data, we call the process that governs the missing-
ness probabilities the missing data model or missing data mechanism: m ∼
pϕ(m|x) = pϕ(m|xobs,xmis) [3,17,22,23]. Distinguishing between missing data
models is important for understanding underlying reasons for the prevalence of
missingness in the data, as well as for determining which missing data methods
are applicable to and valid for the data at hand.

Traditionally, we distinguish three types of missingness mechanisms: MCAR,
MAR, and MNAR [22,23]. Data is said to be Missing Completely At Random
(MCAR) if the probability of being missing depends on some fixed parameters,
and is unrelated to the observed and missing data distribution:

pϕ(m|x) = pϕ(m)

The consequence is that the missing values are not different from observed values.
Data is Missing At Random (MAR) if the probability to be missing depends on
observed data:

pϕ(m|x) = pϕ(m|xobs)

Even though MAR missingness may create severely biased data, the information
about the missing values is available in the dataset and can be used to obtain
valid statistical inference. This concept is known as ignorability [22]. Finally,
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data is Missing Not At Random (MNAR) if the information about the missing
values is missing from the data. Specifically, we write

pϕ(m|x) = pϕ(m|xmis,xobs)

to indicate that (at least some of) the information about the missingness prob-
abilities depends on the missing values themselves.

In practice, these mechanisms are not as distinct as the theoretical definitions
imply. For instance, we say missing data is partially or latently MAR (instead of
MNAR) when it is possible to model the missingness using information in the
missing data indicatorm [12]. Furthermore, for bivariate, numerical data, strictly
distinct missingness mechanisms may yield equivalent statistical inferences [28].
Particularly, MAR missingness becomes indistinguishable from MCAR missing-
ness when data correlations are low; when data relations are strong, it may be
unnecessary to assume MNAR since the missing data can be described well using
observed data information [28]. In addition, missingness mechanisms may occur
concurrently. When a numerical feature contains a mixture of multiple missing-
ness mechanisms, the effect on the distribution of that feature is an additive
combination of the effects of the separate mechanisms [27].

To evaluate the effectiveness of missing data methods, some form of ground
truth must be established. To that end, we distinguish design-based simulation,
where complete sub-samples from real-world datasets are used, from model-
based simulation, where simulation data is drawn from a known probability
distribution [20]. For both approaches, we require a methodology for artificially
generating missing values in complete data: the amputation methodology. An
amputation procedure exists for multivariate, numerical data [26]. There, MAR
and MNAR missingness probabilities are conditioned on linear combinations of
observed and unobserved features, respectively, and the effect on the distribution
of an incomplete feature is manipulated by applying one of four variations of the
logistic function (the LEFT, RIGHT, MID, and TAIL type) [26].

For image data, such an amputation framework does not really exist. One
could create an MCAR mechanism: the probability that a pixel value is missing
is fixed; it is similar for every pixel value. MisGAN [16] assumes this type of miss-
ingness mechanism. In case of an MNAR mechanism, we propose an approach
where the probability that a pixel value is missing depends on the pixel value
itself. For instance, all red pixels are missing. In this paper, we let lighter pixel
values have a higher probability to be missing than darker pixels: our amputation
approach would impact the quality of MNIST digits.

2.2 Data Imputation Methods

The act of replacing a missing value by an actual value (“filling in the blanks”,
colloquially speaking) is known as data imputation. The simplest imputation
methods are single, univariate imputation methods, where each missing value
is imputed once using a fixed value; examples include zero imputation, where a
zero is imputed each time a data entry is missing, and mean imputation, where
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each missing entry is imputed by the mean value of the observed entries for that
column [35], or by creating a ‘prediction’ model that predicts the missing values
using observed data information (cf. [3] for a collection of examples).

Multivariate imputation methods assume the missing data has a monotone
structure [23], can be modeled using a joint probability distribution [25], or use
an iterative approach such as Fully Conditional Specification [4] (also known as
MICE: Multivariate Imputation by Chained Equations). When missing values
are replaced more than once, we speak of multiple imputation [5].

Deep learning methods for missing data imputation include Denoising Au-
toEncoders (DAEs) [10,33] and methods based on Generative Adversarial Net-
works (GAN) [11] such as MisGAN [16], developed for image data, and GAIN
[34], developed for numerical data. Most currently existing deep learning impu-
tation methods are based on the MCAR assumption (with not-MIWAE [14] as
a notable counterexample).

2.3 Generative Adversarial Networks and MisGAN

A Generative Adversarial Network (GAN) [11] is a framework that estimates
generative models via an adversarial process. In general, GANs are character-
ized by training a pair of networks (a generator and a discriminator) that are
in competition with each other [11]. The generator G tries to fool the discrim-
inator D by generating false data that mimics the real data distribution as
closely as possible. The discriminator tries to detect the generator’s actions, by
classifying the data as being real or created by the generator. The GAN frame-
work corresponds to a two-player minimax game with value function V (D,G)
where discriminator D is trained to maximize the probability of assigning the
correct label to both training examples and generated samples, and generator
G is trained to minimize log(1 −D(G(z))) (i.e., maximize the probability of D
making a mistake) [11]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))].

Here, pz(z) is a prior on input noise variables.
GANs are useful for image, video, and voice generation. One of their core

capabilities is image synthesis: creating new images from some form of image
description [6]. GANs can also be used for super resolution: the process of gener-
ating high-resolution images from lower-resolution images, and for artistic style
transfer, which renders natural images in the style of artists [36].

MisGAN [16] is a GAN-based framework for learning high-dimensional in-
complete data that can be used for imputation (cf. Figure 1). Denoting the
incomplete data as a pair of a partially-observed data vector x and a corre-
sponding mask m (cf. start of Section 2), MisGAN starts by defining a masking
operator fτ , which fills the missing entries with a constant value τ . MisGAN
then employs two distinct GANs: the missing data process is explicitly modeled
using the mask generator Gm, and the complete data generator Gx is trained
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Fig. 1. Learning from incomplete data with MisGAN. Image taken from [16].

by comparing the real incomplete data with the generated incomplete data. The
following are the loss functions of the mask and data GAN, respectively:

Lm (Dm, Gm) = E(x,m)∼pD [Dm(m)]− Eε∼pε
[Dm (Gm(ε))]

Lx (Dx, Gx, Gm) = E(x,m)∼pD [Dx (fτ (x,m))]

− Eε∼pε,z∼pz
[Dx (fτ (Gx(z), Gm(ε)))] .

In addition to learning from incomplete data, MisGAN can be used as an im-
puter. Then, an additional GAN is created (Gi, Di) where the generator outputs
the completed samples with the imputed entries. For an image of the structure
of the framework, see [16, Figure 2].

Note that the two generators are mutually independent, both with their own
noise distributions pz and pϵ. This is where the assumption of MCARmissingness
occurs: the missingness of the data does not depend on any values in the data.
If this MCAR missingness assumption is violated, the proofs of the theoretical
results fortifying MisGAN no longer hold [16, cf. Section 3 and Appendix A]. This
implies that the training objective for MisGAN is no longer theoretically justified
for the missing data problem. Of course, that does not necessarily guarantee that
MisGAN will fail when the missingness is not MCAR. In this paper we evaluate
the degree to which MisGAN still works when the missingness is MNAR.

3 Generating MNAR Missingness in Image Data

We evaluate MisGAN on MNAR generated data using the Modified National
Institute of Standards and Technology (MNIST) dataset [9]. It consists of N =
60000 training examples of handwritten digits images of size 28 x 28 pixels. We
use the provided aligned and cropped images and re-scale the pixel values to
[0, 1] (black to white). The average pixel value over the entire dataset is 0.131.
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(a) avg. missingness: 6% (b) avg. missingness: 15% (c) avg. missingness: 30%

Fig. 2. Effect of pixel value on the missingness probability for various ρ and c values.

3.1 Generating MNAR Missingness in MNIST

We generate missing data in the MNIST dataset that adheres to the MNAR
missingness principles: the probability to be missing depends on the missing
value itself. We thus let the probability to be missing depend on the grayscale
values of the pixels in the images. In contrast, generating MCAR missingness
would be done by applying a fixed probability to all pixels.

In addition, our approach contains a scale parameter ρ that allows us to vary
the extent to which the information about the missingness is missing. In other
words, we do not merely generate a pure MCAR or MNAR mechanism, but
rather create a mixture of the two mechanisms. Note that, although in practice
this implies that not all information about the missing values is lost, theoretically
a little MNAR is still MNAR (cf. Section 2.1). It is merely the presentation in
the data that is affected. We employ the following amputation procedure:

Pi = (µi · J−Xi)ρ+Xi + c · J (1)

Here, we overload the generic notation1 and denote a complete sample image as
a matrix Xi ∈ [0, 1]28×28. The mean pixel value of image i is denoted with µi,
J is the all-ones matrix, c is a constant value and ρ is our scale parameter in
the range [0, 1]. For every image i, we then obtain a matrix Pi ∈ [0, 1]28×28 that
contains the missingness probabilities per pixel (we post process the probabilities
to ensure that they are in the interval [0, 1] by setting all sub-zero values to zero,
and all values above one to one). Lastly, we sample from a Bernoulli distribution
using these p-values to determine whether or not a pixel is missing:

a pixel is

{
missing with probability p

not missing with probability 1− p
(2)

1 Sample Xi differs from xi in Section 2 in two ways: 1) Xi is a matrix rather than
a vector, 2) Xi is complete, whereas xi contains missing values. Only after we use
the Bernoulli distribution to translate the probability matrix Pi to a mask matrix
(Mi), we know which values in Xi are missing. This incomplete sample image Xi

is the actual input of MisGAN. The imputed image that MisGAN outputs is then
denoted by X̂i.
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Table 1. Experimental setup (amputation and simulation conditions) and MSE scores
(summary statistics; lower is better) over nine test settings.

Test case Amputation Mean Squared Error
ρ c avg. miss. Mean Std Median

MCAR 06 1 -0.071 6% 0.515 0.076 0.518
MCAR 15 1 0.019 15% 0.515 0.077 0.518
MCAR 30 1 0.169 30% 0.515 0.076 0.518
MNAR 06 0.6 0.6 -0.071 6% 0.545 0.066 0.544
MNAR 15 0.6 0.6 0.019 15% 0.549 0.065 0.548
MNAR 30 0.6 0.6 0.169 30% 0.558 0.063 0.557
MNAR 06 0.2 0.2 -0.071 6% 0.587 0.061 0.586
MNAR 15 0.2 0.2 0.019 15% 0.599 0.060 0.598
MNAR 30 0.2 0.2 0.169 30% 0.626 0.063 0.625

In Equation (1), parameter ρ determines the extent to which the missingness
depends on the missing pixel value; the amount of MCAR missingness mixed
with MNAR. If ρ equals 1, we generate a pure MCAR missingness mechanism.
Then, the probability of missingness for each pixel is exactly similar for all pixels:
close to µi + c (in Section 2.1, this fixed probability is denoted by ϕ). Figure 2
demonstrates the generation of MCAR missingness with the horizontal (green)
lines; there is no relation between pixel values and probability of being missing.
The authors from MisGAN refer to this type of missingness as dropout [16].
When scale parameter ρ decreases, the missingness will increasingly depend on
the pixel values and become MNAR. This can be seen in Figure 2 by comparing
the blue lines for ρ = 0.2 with the orange lines for ρ = 0.6: the smaller ρ, the
higher the missingness probability for high-grayscale pixel values. Then, more
information from the MNIST image will be lost (in contrast to black pixels: if
those are masked, no substantial information is lost).

Constant c controls the percentage of missing values in the entire dataset.
Since the pixel values are re-scaled to [0, 1], the mean value µi represents a
probability as well. Therefore, the expected percentage of missing values over all
images is the sum of the overall pixel mean (0.131), and c. In Figure 2, this effect
can be seen by the vertical shift of the lines (i.e., compare the y-axis values).

Note that we subtract the pixel values in Mi from µi and thus let higher
grayscale values (i.e., white pixels) obtain a higher probability of being missing
than lower grayscale values (i.e., black pixels). This corresponds to the RIGHT
missingness type as defined in the multivariate amputation approach of [26].

4 Experimental Setup

We choose to run our experiments with ρ ∈ {0.2, 0.6, 1}. We generate average
missingness percentages of 6%, 15%, and 30%, which means that we let c ∈
{−0.071, 0.019, 0.169} (see Table 1). We chose to use these percentages after
visually inspecting the missingness; since a large part of each MNIST image is



8 N.T.J. van den Berg et al.

(a) Mean estimates. (b) Distributions.

Fig. 3. MSE score metadata over all images for all 9 test cases.

black background, containing no actual information on the hand-written digit
(we will refer to these black pixels as “uninformative” while calling the non-black
pixels “informative”), MNAR missingness with too high missingness percentages
will leave no data for MisGAN to train on. For the same reason, the lowest scale
parameter value that we use is 0.2; applying a pure MNAR mechanism with
ρ = 0 will also remove too many informative pixel values.

We evaluate the performance of MisGAN by computing the Mean Squared
Error (MSE) of the imputed informative pixels:

MSE(yyyi, ŷyyi) =
1

ki

ki−1∑
j=0

((yyyi)j − (ŷyyi)j)
2

(3)

Here, yyyi is the vector of all ki informative pixels of image i and ŷyyi is the vec-
tor of imputed values for those same pixels.2 Naturally, there is no error when
informative pixels were not masked. The lower the MSE score, the better the
performance of the imputation. For reproducibility purposes, all code can be
accessed at our Github page.3

5 Experimental Results

Estimates of the mean, standard deviation and median of the MSE scores over
all images are shown in Table 1. The estimates of the mean are displayed in
Figure 3a; Figure 3b shows the distribution of the MSE scores.

We find that MSE scores increase when data is amputed with an MNAR
missingness mechanism, compared to an MCAR mechanism. The stronger the

2 To be precise, yyyi = {Xi[d] | Xi[d] > 0} and ŷyyi = {X̂i[d] | Xi[d] > 0} for all
d ∈ {1, 2, ..., 784}.

3 https://github.com/RianneSchouten/misgan mnar/

https://github.com/RianneSchouten/misgan_mnar/
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(a) Masked images.

(b) Imputed images.

Fig. 4. Masked (top) and imputed (bottom) MNIST images under 15% missingness
for MCAR. Masking is shown in gray.

MNAR aspect of the MCAR-MNAR mixture, the higher the MSE scores (cf.
Figure 3a, orange and green lines). Furthermore, we find that MSE increases
when missingness percentages increase (e.g., MSE increases from 0.545 via 0.549
to 0.558 when missingness percentage increases from 6% via 15% to 30% and
ρ = 0.6; see Table 1). With a pure MCAR mechanism, all mean estimates of
the MSE scores are 0.515: the missingness percentage does not influence the
accuracy of the imputation procedure (cf. Figure 3a, horizontal blue line).

Figures 4b, 5b and 6b demonstrate the imputation procedure for 15% miss-
ingness in a few example images. Although it is clear that a stronger MNAR
mechanism results in more diffused imputed digits, the extent to which the orig-
inal digits are visible and recognizable by the human eye can be considered
surprising (e.g., see Figure 6b), especially since MisGAN will have had little in-
formation to train on (note that the digits in Figure 6a are more clearly visible
since the amputed pixel values are indicated as masked by a gray color).

6 Discussion

This paper investigates the effectiveness of MisGAN under the MNAR assump-
tion. We propose a method for generating MNAR missingness based on the
grayscale values; we apply some function to them, and use Bernoulli probabil-
ities to determine missingness in the images, subsequently testing MisGAN on
this type of missingness (cf. Equation (1)). This is just one approach to model
MNAR missingness. One could also decide to let the missingness depend on the
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(a) Masked images.

(b) Imputed images.

Fig. 5. Masked (top) and imputed (bottom) MNIST images under 15% missingness
for MNAR with ρ = 0.6. Masking is shown in gray.

target variable or certain shapes in the image; there are varying ways to sim-
ulate MNAR. Even for the MNAR missingness based on grayscale value, there
are countless ways to simulate MNAR missingness. Consider Figure 7. Suppose
that missingness can only depend on the grayscale value of a pixel. In the left
graph one can see MCAR missingness, since for all grayscale values, there is an
equal probability of missingness. The graph in the middle and on the right are
both showing MNAR missingness as the probability depends on the grayscale
value. The middle graph, however, looks much more like the MCAR case and
will therefore be easier to impute than the one on the right, based on the results
of the MSE scores and visual inspection in Section 5. It makes sense that the per-
formance of MisGAN in the MNAR case not only depends on the extent of the
missingness, but also on the degree to which the MNAR missingness resembles
MCAR missingness [28].

It is hard to say whether or not MisGAN could still be employed under these
circumstances. In this paper, we evaluated by calculating the Mean Squared Er-
ror over the informative pixels. This is an imputation-accuracy based evaluation
metric which has been criticized (“imputation is not prediction” [3, Section 2.6],
the distribution of imputed values is multimodal [16]). At the same time, the
goal of our paper is to demonstrate how to effectively generate MNAR missing-
ness in image data. Since our MNAR amputation approach strongly connects
to individual pixel values, it seems appropriate to directly evaluate the imputed
values of those individual pixels. At least, there is precedent for using MSE to
evaluate imputation methods on MNIST [7,8]. In addition, the approach of us-
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(a) Masked images.

(b) Imputed images.

Fig. 6. Masked (top) and imputed (bottom) MNIST images under 15% missingness
for MNAR with ρ = 0.2. Masking is shown in gray.

ing an inference-based evaluation metric as suggested by [3] is not applicable
to image data. The approach of using a classification-accuracy-based evaluation
metric seems more appropriate, but requires the context of a train-test split [31]
which is beyond scope for this paper.

We investigated one more approach: the Fréchet Inception Distance (FID),
suggested by [13] as a way of evaluating the performance of a GAN in such
a way that it reflects the visual quality of the generated images. The FID is a
distance measure over the mean and covariance structure of the activation scores
of a batch of images loaded into a pre-trained image classification model (in the
case of [13], this is Inception [32] trained on ImageNet [24]). The idea is that
the deepest layers of the network are close enough to the output layer to reflect
classification accuracy, but far enough from the raw input pixel values to prevent
issues such as high modality.

Although we recognize the potential value of this approach, we currently
believe it is not sufficiently standardized for generic use. On the one hand, at
the moment, there is no consensus on which image classification network ought
to serve as a ground-truth model. The typically used Inception [32] network
is trained on ImageNet [24], which may be a decent ground truth for generic
image classification problems, but a more tailored ground truth is likely more
appropriate for specific data spaces such the black and white MNIST image
space. At the same time, the alternative of a LeNet model as used by [16, p.6]
seems at best an arbitrary choice. On the other hand, FID is proposed as an
evaluation measure of generated images [13]; its appropriateness as a measure
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Fig. 7. Illustration of ways to simulate MNAR missingness

of evaluating imputation quality is not yet clear. Possible issues with Inception-
based scores that result to unreasonably low FID scores, such as images that
are too similar or not realistic enough [2,29], may be particularly vexing in the
context of imputation and disturb the simulation process.

As possible alternatives for evaluating the performance of GANs, two mea-
sures exist akin to recall and precision [29] proposed, and a three-dimensional
metric exists that captures the fidelity, diversity, and generalization quality of
the generated images [1]. It is worth investigating to what extent these met-
rics would be useful for evaluating the imputation performance of a GAN-based
imputer such as MisGAN.

7 Conclusion

We determine the degree to which MisGAN [16] is capable of handling image
data with Missing Not At Random (MNAR) missingness. We propose a method
for generating MNAR missingness in the MNIST dataset and let higher grayscale
pixel values have a higher probability of being missing. In addition, we vary the
extent to which these missingness probabilities depend on the pixel values and
investigate the effect of simultaneously occurring mechanisms. Indeed, we find
that MisGAN is not working quite as well on MNAR data as it is on MCAR
data; the stronger the MNAR effect, the higher the drop in performance.

7.1 Future Work

This research extended the research of [16], which presented a GAN-based frame-
work for learning from complex, high-dimensional incomplete data where data
is assumed to be MCAR. Our contribution to this research is that we assume
data to be MNAR. However, we do not investigate the underlying mathematical
theorem for the MNAR approach. In order to have a deeper understanding on
MisGAN in the case of MNAR, a theoretical analysis is required. Furthermore,
it would be interesting to perform similar investigations for MisGAN-adjacent
methods, such as GAIN [34], MCFlow [21], EMFlow [18], and MIWAE [19].
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Finally, one last elephant remains in the room: this whole paper rather ignores
the existence of the MAR missingness mechanism. For traditional, flat-table
data, having three distinct missingness mechanisms makes sense: MCAR makes
the missingness of data depend on neither the observed nor the missing data,
MAR makes the missingness of data depend on observed but not the missing
data, and MNAR makes missingness of data depend on the missing data itself.
So, in flat-table data, MCAR missingness is typically uniformly random, MAR
missingness means that information on missing values can be derived from values
in other columns of the dataset, and MNAR missingness hides the information
on the missing value in the missing value itself. These three mechanisms do not
necessarily translate to pixel-level missingness mechanisms in image data. Gen-
erating MCAR missingness in image data is trivial: just mask randomly selected
pixels. We introduced one specific mechanism to generate MNAR missingness in
image data in Section 3.1. However, it is not immediately apparent how to gen-
erate MAR missingness in image data, without accidentally generating MNAR
missingness. The MAR concept is that the missingness of a pixel would depend
on the values in other pixels, but not on the value of the pixel itself. However,
suppose that we find ourselves in a white pixel that lies on the diagonal stripe
of a seven. We can make its missingness depend on the value of another pixel,
which might also lie on that same diagonal stripe. In that case, the value of the
other pixel is strongly correlated with the value of the pixel whose missingness
we are trying to determine, and in trying to generate MAR missingness we have
in fact generated MNAR missingness. A solution to this problem can probably
be found by not trying to generate MAR missingness in image data on the pixel
level, but instead trying to generate such missingness on a higher, conceptual
level. This implies that MAR missingness in image data might perhaps be gen-
erated in a convolutional layer of a neural network. Properly defining such a
mechanism and making it work in practice would encompass an exciting future
research direction.
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