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Abstract. As algorithms increasingly automate decisions based on po-
tentially biased data, it’s essential for these algorithms to be fairness-
aware. Choosing the appropriate fairness definition is critical to ensure
compliance with non-discrimination legislation, allowing it to be used as
evidence in court and preventing it from being subjectively or arbitrarily
chosen by system developers/controllers. Wachter, Mittelstadt, and Rus-
sell’s 2021 paper advocates conditional demographic parity (CDP) as a
philosophically sound and legally aligned fairness standard. We propose
a fairness definition using k-NN situation testing with a custom distance
function, building on Lenders and Calders’ 2021 work. Our method en-
hances their approach by ensuring fairness comparisons are only made
within similar groups and enabling the measurement of both discrimi-
nation and favouritism. Our approach offers advantages over CDP and
individual fairness definitions based on k-NN.

Keywords: Individual fairness · Group fairness · Non-discrimination
law · Discrimination · Favoritism · Situation testing.

1 Introduction

In today’s automated decision-making, subjective human decisions are increas-
ingly replaced by supposedly objective algorithms. However, algorithms trained
on biased, human-influenced data will produce biased decisions. Relying on al-
gorithms unaware of this bias does not bring us closer to objectivity; instead,
it risks amplifying and perpetuating unfairness [8]. Unfair algorithmic outcomes
reinforce existing stereotypes, creating biased datasets leading to a self-fulfilling
prophecy. Addressing this requires fairness-aware algorithms (e.g., classifiers).
Unlike human judgment, algorithms disclose the attributes used and their cor-
relation to sensitive attributes like gender, ethnicity, and religion. This trans-
parency is an advantage, as human judgment often harbors subconscious biases
from group generalizations.

Integral to fairness-aware classification is the challenge of measuring and as-
sessing fairness. Wachter, Mittelstadt, and Russell proposed conditional demo-
graphic parity (CDP) as a baseline fairness definition, aligned with the European
Court of Justice (ECJ) "gold standard" [23]. The ECJ standard mandates com-
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paring the composition (e.g., positive decision proportion) of deprived (e.g., fe-
males) and favored (e.g., males) groups [17]. Additionally, EU non-discrimination
laws require that individuals in both groups be in similar situations, reflecting
Aristotle’s principle of treating similar cases similarly [2]. Discrimination may
be legally justified if it serves a legitimate aim and is necessary and propor-
tionate (e.g., a genuine job requirement). Harmonizing statistical measurements
with EU non-discrimination laws is crucial to ensure fairness definitions are
court-admissible and not subjectively or arbitrarily chosen by system develop-
ers/controllers. The latter would imply an unjustifiable shift in power from regu-
lators/judges to system developers/controllers. CDP is suitable only for datasets
where class labels may contain some unwanted bias, meaning labels represent
human decisions prone to bias (e.g., recidivism risk). Independence criteria, such
as CDP, use only features and predicted labels, excluding the class label. With-
out a bias-free class labels, fairness definitions using the class label should not be
applied, making only independence criteria suitable [20]. For objective measure-
ments or indisputable facts (e.g., image recognition), the bias-free class labels
(i.e. correct outcome) are directly measurable or unambiguously observable.

However, Wachter, Mittelstadt, and Russell’s work has a limitation in its lack
of distinction between group fairness and individual fairness [23]. The key dif-
ference between CDP and individual fairness lies in how explanatory attributes
define groups requiring equal treatment. Explanatory attributes can justify "un-
fairness" (e.g., genuine job requirements), so they must be incorporated into
fairness definitions. CDP mandates equal positive rates among groups with a
common explanatory attribute value or within a cluster based on multiple ex-
planatory attributes. Individual criteria compare the positive rates of one or
more groups similar to a given instance, with similarity measured by a distance
function applied to all explanatory attributes. The size of the groups being com-
pared for existing individual criteria is also restricted; for example, a deprived
instance is only compared to the k nearest favored instances [5, 15].

A drawback of individual fairness definitions is the need for a defined dis-
tance function. Luong, Ruggieri, and Turini defined such a distance function
to apply the legally grounded methodology of situation testing, where pairs of
similar individuals—differing only in a sensitive attribute—are compared [16, 3,
19]. Building on this, Lenders and Calders developed an optimization algorithm
to learn a weighted distance function from data to compare similar individuals
and assess potential discrimination [15]. Their algorithm assigns high weights
to attributes relevant to the decision task (e.g., explanatory attributes) and low
weights to redlining attributes. Redlining attributes correlate with the class la-
bel mainly through the sensitive attribute, implying that given the sensitive
attribute, the class label is only weakly correlated with the redlining attribute.
For example, postal codes may correlate with loan approval decisions but cannot
justify unfair decisions. Postal codes are also linked to sensitive attributes like
ethnicity, making them prone to unfairness due to historical racism in housing
[4, 1].
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However, Lenders and Calders’ approach has limitations: it does not mea-
sure reverse unfairness and favoritism, restricts the group size of "similar" in-
stances to a constant k, does not assess the significance of unfairness results, and
only accommodates interval-scaled attributes [15]. Individual fairness focuses on
fairness for each instance, making it important to distinguish the specific sensi-
tive group to which the instance belongs. In contrast, CDP assesses fairness at
the group level, comparing outcomes across entire groups, and does not capture
individual-level biases. Therefore, discrimination and favoritism are uniquely rel-
evant to individual fairness, not to CDP. Individual unfairness measured from
the perspective of a deprived instance is referred to as discrimination, while that
measured from the perspective of a favored instance is referred to as favoritism.

In individual fairness, an instance is compared with similar ones, typically
using a k-nearest neighbors approach. When a deprived instance is compared
with its k nearest favored neighbors, only the denial rate for positive outcomes
in the favored group is considered [5, 15]. This approach overlooks apparent bi-
ases against favored instances by ignoring the denial rate of the nearest deprived
group. Reverse unfairness from the perspective of a deprived instance measures
this apparent bias against the favored group (e.g., a high denial rate). If both
groups are denied the same proportion of positive decisions, no unfairness re-
garding the sensitive attribute exists. Like discrimination and favoritism, reverse
unfairness is an individual-level bias. To properly assess individual unfairness,
both biases against deprived and favored instances must be considered.

This paper introduces a new fairness definition, expanding on Lenders and
Calders’ work to detect unfairness in both datasets and machine learning (ML)
models [15]. Our definition offers five key innovations: it measures reverse un-
fairness and favoritism, is based solely on individual similarity, evaluates the
significance of unfairness, and supports mixed data types. Additionally, it can
be integrated with unfairness prevention techniques to eliminate biases in ML
models. We advocate using our definition over CDP because it ensures only
similar groups are compared and provides unfairness scores that quantify dis-
crimination or favoritism for each instance. We validate our approach using the
COMPAS dataset and a dataset from the credit lender AdviceRobo, where the
decision task is loan granting and the sensitive attribute is the applicant’s lan-
guage [14]. Although the latter results are not discussed in this paper, they are
available on GitHub and support our COMPAS findings.3

2 Methodology and Data

In this section, we present our methodology and data, including notation, fairness
definitions, a glossary, evaluation methods, and the dataset description.

3 Source code: https://github.com/python211223/fairness-aware-classification.
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2.1 Notation

We consider a two-class classification problem with class labels c ∈ {+,−} over n
instances x ∈ X with p attributes in an unfair dataset D = (xji, cj) ∈ Rn×(p+1).
An unfair dataset implies the class labels may contain some bias (i.e., the ground
truth is not available). The binary sensitive attribute S takes values si or s ∈
{d, f}, indicating whether an instance is in the deprived group (s = d) or the
favored group (s = f). Superscripts of X denote membership of instances in the
deprived (X d) or favored (X f ) group, and the presence of the desired/positive
(X+) or undesired/negative (X−) class label. The explanatory attribute E has
h different values denoted ei or e. Instances with the same attribute value ei are
indicated as X ei . Cardinalities of sets are denoted by vertical bars; for example,
|X f+| represents the number of favored instances with a positive label. The
fairness definitions in this paper measure fairness in a dataset but can also assess
the fairness of classifier fairness using the labeled test data as dataset.

2.2 Methodological Background

Group Fairness To measure discrimination, Kamiran, Žliobaitė, and Calders
used the difference in positive rates between the favored and deprived groups:

Dall(D,S) :=
|X f+|
|X f |

− |X d+|
|X d|

, (1)

where demographic parity (DP) is satisfied if Dall = 0 [10]. In probability terms,
Dall represents the difference in positive class probabilities between x ∈ X f and
x ∈ X d.4 To determine which part of Dall is fair (justified due to an explanatory
attribute), they defined the probability of observing x ∈ X+ for the explanatory
attribute ei in the absence of discrimination as follows:

P ∗ (c+ | X ei
)
:=

P
(
c+ | X ei ,X f

)
+ P

(
c+ | X ei ,X d

)
2

. (2)

They assumed the same fraction of favored instances benefit from discrimination
as the fraction of deprived instances disadvantaged. Thus, they used the average
P (c+ | X ei ,X s) for s ∈ {d, f}.5 To measure fair discrimination (i.e., explainable
discrimination), Kamiran, Žliobaitė, and Calders (2013) used

Df (D,S,E) :=

h∑
i=1

[
P (ei | X f )− P (ei | X d)

]
P ∗ (c+ | X ei

)
. (3)

Df measures the probability difference in observing x ∈ X+ between favored and
deprived instances if each instance with a fixed explanatory attribute value ei had
the same chance of receiving a positive class label, independent of its sensitive
4 Dall(D,S) := P

(
c+ | X f

)
− P

(
c+ | X d

)
5 P (c+ | X ei ,X s) is a short notation for P (c = + | E = ei, S = s).
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attribute value. To measure group unfairness conditioned on one explanatory
attribute, we subtract fair discrimination Df in (3) from the total discrimination
Dall in (1):

Du(D,S,E) := Dall(D,S)−Df (D,S,E) (4)
[10]. CDP is satisfied when Du = 0 and assumes that all members conditioned
on ei are similar.

To address the limitation of using only one explanatory attribute, Kamiran,
Žliobaitė, and Calders proposed an approach using k-means clustering, where
clusters are defined by all available explanatory attributes, referred to as CDP-
ME [10]. CDP-ME requires equal positive rates within each cluster rather than
within groups similar in just one explanatory attribute. They excluded attributes
highly correlated with the sensitive attribute (e.g., redlining attributes) from
clustering. A drawback of CDP(-ME) is that the selection of explanatory at-
tributes must be determined externally by law or domain experts. Additionally,
Kamiran, Žliobaitė, and Calders did not apply weights to attributes or provide
guidance on selecting the number of clusters [10]. Since not all explanatory at-
tributes may be equally relevant to the class label, weighting them by relevance is
preferable. The number of clusters affects within- and between-cluster similarity
and, consequently, adherence to the ECJ’s principle of equal treatment.

Individual Fairness Lenders and Calders provided an optimization algorithm
to learn the relevance weight w for each attribute by minimizing

1

|C(X d)|
∑

x ,x’∈C(Xd)

d2w (x ,x’ ) +
1

|C(X f )|
∑

x ,x’∈C(Xf )

d2w (x ,x’ )

− 1

|C ′(X d)|
∑

x ,x’∈C′(Xd)

d2w (x ,x’ )− 1

|C ′(X f )|
∑

x ,x’∈C′(Xf )

d2w (x ,x’ )

+ λ∥w∥22, (5)

where C denotes the instances with the same class label, C ′ represents instances
with a different class label, and λ∥w∥22 defines an L2 regularizer [15]. Attributes
correlated with the class label only through a sensitive attribute (i.e., redlining
attributes) receive a weight of 0 in the optimal solution, as they are condition-
ally independent of the class label and should be excluded from the distance
function. Attributes that are uncorrelated with the class label also receive near-
zero weights since they only increase the distances in the last two sums of (5).
Sequential least squares programming (SLSQP) is used to minimize (5).6 The
optimized weights w = (w1, . . . , wp−1) are applied in a distance function to find
the k most similar (nearest) instances for which equal treatment is required:

dEw(x ,x’ ) :=

√√√√p−1∑
i=1

wi(xi − x′
i)

2. (6)

6 SLSQP is a quasi-Newton method that approximates the region around the optimum
of (5) with a quadratic function.
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Nominal attributes must be one-hot encoded, and interval-scaled attributes should
be Z-score standardized or min-max normalized to avoid dominance in the dis-
tance calculation. To measure individual fairness Lenders and Calders introduced
the Dk-score:

Dk(x ) :=
|X f+

k |
|X f

k |
, (7)

where for each observation x ∈ X d−, the positive rate among its k nearest
favored neighbors is measured [15]. To quantify the unfairness of a dataset we
use the average Dk-score over all deprived instances with a negative class label:

Uk(D,S) :=

∑
x Dk(x)

|X d−|
. (8)

2.3 Methodological Contribution

Unfairness Scores beyond Discrimination A drawback of using (7) to mea-
sure individual fairness is that the maximum allowable distance for a neighbor to
be considered near is not restricted. Without such a restriction, distant neighbors
may be included in the k-nearest neighbors set, potentially compromising simi-
larity. This is problematic since the legal methodology of situation testing and
the ECJ’s principle of equal treatment emphasize comparing similar individuals.
Therefore, it may be preferable to base the nearest neighbors solely on their sim-
ilarity without restricting the number of neighbors. Additionally, using k-nearest
neighbors can yield unstable results if the dataset contains duplicate rows with
different class labels, as choosing the k nearest neighbors among duplicates with
the same distance but different labels is challenging. Another limitation of (7) is
that it only measures biases against x ∈ X d and does not measure biases against
x ∈ X f (reverse unfairness) or biases in favor of x ∈ {X d,X f} (favoritism). To
address these issues, we introduce new unfairness scores:

Dm(x ) :=
|X f+

m |
|X f

m|
− |X d+

m |
|X d

m|
, (9)

Fm(x ) :=
|X d−

m |
|X d

m|
− |X f−

m |
|X f

m|
. (10)

In (9), for each x ∈ X d−, the positive rate among the deprived neighbors within
a distance m is subtracted from the positive rate among the favored neighbors
within a distance m. The vice-versa case applies to each x ∈ X f+ in (10),
which measures favoritism. The subtraction in (9) and (10) ensures that reverse
unfairness is also accounted for.

Setting m For this study, we calculate each instance’s distance to its nearest
neighbor and set m (9) and (10) equal to Q3 + 1.5 × IQR, where Q3 is the
third quartile and IQR is the interquartile range of these distances. We use the
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maximum non-outlier value (i.e., Q3 + 1.5× IQR) to exclude distant neighbors
("outliers") when calculating unfairness scores [21]. Thereby, we assume that all
neighbors within a distance m are similar. If an instance has no neighbor with a
different sensitive attribute within a distance m, it receives no unfairness score
due to lack of statistical evidence for unfairness. Nevertheless, human auditors
can still provide proof using non-statistical evidence for unfairness; however,
these types of evidence are beyond the scope of this paper [23]. When no neighbor
with the same sensitive attribute is found within a distance m, the subtraction
in (9) and (10) will be equal to zero, ensuring that unfairness scores are not
based on distant (dissimilar) neighbors.

Significance of Unfairness Score Lenders and Calders only consider Dk > t
as unfair, as large values for t will not consider instances with small Dk-scores
as unfair [15]. Ideally, t should be based on existing discrimination laws or clear
guidelines, but these are not always available. They therefore set t equal to the
maximum non-outlier value of Dk-scores for x ∈ X f−, defined as the largest
value within Q3 + 1.5 · IQR. This approach assumes that the class labels of
favored instances are fair (i.e., favoritism does not exist), but since favoritism
might also be present, t should not be set based on favored instances’ class labels.
Lenders and Calders and Kamiran, Žliobaitė, and Calders also did not address
the statistical significance of their fairness results [15, 10]. Assessing statistical
significance is crucial to determine whether the observed unfairness is not due to
random chance. Rather than setting a specific threshold value for t, we consider
an unfairness score as unfair if it passes a statistical significance test, specifically
the two-sided two-proportion Z-test. We use Dm defined in (9) to explain the
confidence intervals (CI’s), but the same methodology can be applied to Fm in
(10) by replacing all references to (9) with (10). The CI for the two-proportion
Z-test of the unfairness score in (9) is calculated as follows:

CI2p := p̂1 − p̂2 ± z ×

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
, (11)

where p̂1 and p̂2 represent the first and second terms in (9), respectively, and
p̂1 − p̂2 equals the unfairness score. z is the z-score for the desired confidence
level, and n1 and n2 are the denominators of the first and second terms in (9).
The large sample size assumptions for the two-proportion Z-test are n1× p̂1 ≥ 5,
n1×(1− p̂1) ≥ 5, n2× p̂2 ≥ 5, and n2×(1− p̂2) ≥ 5 [24]. If these assumptions are
not met, a one-proportion Z-test is used. Since one proportion is nonnegative,
a one-sided confidence interval is used with the alternative hypothesis that the
proportion is greater than zero. The lower bound of the CI for the one-proportion
Z-test is:

CI1p := p̂− z ×
√

p̂(1− p̂)

n
, (12)

with p̂ as the unfairness score, z as the z-score, and n as the denominator of the
first term in (9). The large sample size assumptions for the one-proportion Z-test
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are np̂ ≥ 5 and n(1 − p̂) ≥ 5 [24]. We use the commonly used 5% significance
level, with z-scores of ∼1.96 for the two-sided Z-test and ∼1.645 for the one-sided
Z-test. If the assumptions are unmet or the unfairness score is insignificant, the
instance does not receive an unfairness score due to insufficient evidence for
unfairness.

Aggregating Unfairness Scores To express the unfairness of a dataset cal-
culated with (9) and (10), we introduce the fairness definition:

Um(D,S) :=

∑
x Dm(x ) +

∑
x Fm(x )

|Dm(X d−)|+ |Fm(X f+)|
, (13)

where Dm(X d−) and Fm(X f+) denote the sets of given unfairness scores in a
dataset. In (13), the unfairness scores of all instances that received an unfairness
score are summed and divided by the total number of instances that received
a score. This ensures that −1 ≤ Um ≤ 1, facilitating comparison with group
unfairness measured by (1) and (4). Um represents the average unfairness score of
all instances that received a score, with Um > 0 indicating unfairness against x ∈
X d and Um < 0 indicating reverse unfairness against x ∈ X f . The proportion
of instances receiving an unfairness score is defined as

Un(D,S) :=
|Dm(X d−)|+ |Fm(X f+)|

|X d−|+ |X f+|
. (14)

When two nearby instances with different sensitive attributes both receive pos-
itive unfairness scores, there is a high likelihood that at least some neighboring
instances influence the unfairness scores of both instances. Thus, relabeling one
instance is likely to reduce the unfairness score of the other. The decision on
which instance to relabel involves balancing fairness, as measured by (13), with
the performance (e.g., accuracy) of a ML model post-relabeling. Ideally, fair-
ness should be improved with minimal performance loss [7]. Conversely, distant
instances with different sensitive attributes and positive unfairness scores do
not impact each other’s unfairness. For nearby instances with different sensi-
tive attributes and negative unfairness scores, there is a high likelihood that at
least some neighboring instances contribute to the reverse unfairness for both
instances. The same principle applies to distant instances with different sensitive
attributes and negative unfairness scores.

Redefined Distance Function The weighted Euclidean distance in (6) is ap-
plicable only to interval-scaled attributes. To address this, we use a new distance
function based on Podani’s distance to calculate Uk in (8) and Um in (13) [18]).
Podani’s distance extends Gower’s distance by also incorporating ordinal at-
tributes. We further adapt Podani’s distance by including weights, which we
refer to as the weighted Podani’s distance [18]:

dPw (x ,x’ ) :=

√√√√p−1∑
i=1

wi

(
xi − x′

i

sxi,x′
i

)2

. (15)
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For a binary attribute i, sxix′
i
:= 1. For a nominal attribute i, sxix′

i
:= xi − x′

i if
xi ̸= x′

i, and sxix′
i
:= 1 if xi = x′

i. For an interval-scaled or ordinal attribute i,
sxix′

i
:= maxi −mini if maxi ̸= mini, and sxix′

i
:= 1 if maxi = mini. We compute

the weights w similarly to Lenders and Calders [15]. Ordinal attributes are label-
encoded. (15) avoids the need for one-hot encoding of nominal attributes, thus
mitigating the curse of dimensionality. We include all attributes except sensitive
ones to evaluate the effectiveness of minimizing (5) in filtering out irrelevant
attributes. When referring to an instance being near/similar to instance x , we
use (15), indicating proximity based only on relevant attributes.

2.4 Glossary

In Table 1, the definitions of the most important terms are provided.

Table 1: Definitions of Terms Used
Term Definition
Dk-score The positive decision rate among the k nearest favored neighbors for a

deprived instance; see (7)
Dm-score The difference in positive decision rates between favored and deprived

neighbors within a distance m for a deprived instance; see (9)
Fm-score The difference in negative decision between favored and deprived neigh-

bors within a distance m for a favored instance; see (10)
Uk Average Dk-score; see (8)
Um Average unfairness score (Dm-/Fm-score); see (13)
Un The proportion of instances that received an unfairness score; see (14)
Unfairness score Dm- or Fm-score

2.5 Experiments

We begin by addressing the attribute weights obtained by minimizing equation
(5), using λ = 0.09, consistent with the approach of Lenders and Calders [15].
We also adopt their starting values and bounds for weights: w =

[
0.1 · · · 0.1

]
and 1·10−14 ≤ wi < ∞ [15]. Next, we analyze group similarity under our fairness
definition in (13) compared to that of Lenders and Calders in (7). We set the
distance threshold m in (13) equal to the maximum non-outlier value distance
from instances to their nearest neighbor; however, it remains crucial to manually
examine if the value of m is appropriate. Thus, we begin our analysis by exam-
ining the histograms of distances from instances to their nearest neighbor. We
also use histograms of distances to neighbors with different sensitive attributes
to provide insight into evidence of unfairness. If the nearest neighbor is far, other
neighbors will also be distant, and using these neighbors in (8) will therefore vio-
late the ECJ’s principle of equal treatment. Finally, we provide histograms of the
number of neighbors used for each unfairness score, as the number of neighbors
influences the significance of these scores.
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Unlike Lenders and Calders’ fairness definition, our unfairness scores mea-
sure discrimination and favoritism [15]. Consequently, we present histograms and
means of the unfairness scores to assess (reverse) discrimination and favoritism.
Additionally, we show histograms after relabeling all deprived instances with
Dm > 0 to identify which Dm- and Fm-scores are influenced by the same neigh-
boring instances. If no (reverse) favoritism remains after relabeling, it implies
that all unfair deprived instances were near unfair favored ones. Furthermore,
we compare our fairness definition with Lenders and Calders’ by providing his-
tograms of Dk-scores in (7) [15]. Lenders and Calders tuned k in (7) to maximize
accuracy when predicting class labels of favored instances. However, because fa-
voritism can exist in a dataset, k should not be tuned for predicting "unfair"
class labels. Instead, we use the median number of near favored neighbors for
x ∈ X d− in Um in (13).

After evaluating group similarity for individual fairness, we assess group simi-
larity and the number of groups (clusters) for CDP-ME using the silhouette score
[11]. The silhouette score, ranging from [-1,1], measures how similar instances
are to their own cluster compared to other clusters. A score near 1 indicates
strong clustering (i.e., the instance is far from neighboring clusters), a score
near 0 implies that an instance lies close to the decision boundary between two
neighboring clusters, and a score below 0 indicates that an instance is assigned
to the wrong cluster. An average silhouette score above 0.7 implies a strong clus-
ter structure, 0.51-0.7 indicates reasonable clustering, and below 0.51 indicates
poor clustering. Poor clustering implies low within-cluster similarity and/or high
between-cluster similarity. Requiring equal treatment within a cluster with dis-
similar instances, or allowing different treatments between clusters with similar
instances, violates the ECJ’s principle of equal treatment. Therefore, it is cru-
cial that instances within a cluster are similar and that those from different
clusters are dissimilar. We only use relevant attributes (wi > 0.01), determined
by minimizing (5). Finally, we compare group unfairness using Dall in (1) with
unfairness measured by Um in (13) for each cluster.

2.6 Data

We evaluate our methods using the COMPAS dataset, excluding missing val-
ues [14]. This dataset was chosen for its inherent unfairness, measured using
Dall from (1), and its size ensures adequately sized bins for CDP in (4), avoid-
ing misleading results [9]. The COMPAS dataset features criminal defendants
from Broward County, Florida, assessed for recidivism risk with scores catego-
rized into "low" (1–4) and "medium + high" (5–10) [13]. As recidivism risk is
a proxy rather than an objective measure, we consider the class labels poten-
tially biased.7 We use all attributes except sex, IDs, case numbers, names, dates,
age_cat, non-recidivism COMPAS scores, attributes with many missing values,

7 Actual recidivism within two years (ground truth) in the COMPAS dataset is ex-
cluded to enable its use for our fairness definition. Assessing the fairness of COMPAS
scores with all available information is beyond this paper’s scope.
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and charge descriptions. Race, the sensitive attribute, is binary (white or black)
with other races excluded [12]. Priors_count is used for CDP as it accounts for
most discrimination (Dall ≈ 0.24, Du ≈ 0.19).

3 Results

3.1 Individual Fairness

Distribution of Minimum Distances The most relevant attributes in the
COMPAS dataset are is_recid and r_charge_degree, while five attributes have
low weights (exact weight values are on GitHub). As expected, an individual’s
prior offense history (is_recid) and the severity of that offense (r_charge_degree)
are key factors in determining recidivism risk. Since multiple relevant attributes
exist, fairness definitions that cannot incorporate all relevant attributes (e.g.,
CDP) are unable to accurately assess unfairness. Figure 1a shows the frequency
distribution of the distances from all the instances to their nearest neighbor.
For the COMPAS dataset, m in (13) is set to ∼0.008, the maximum non-outlier
value in Figure 1a. Most instances have a near neighbor at a distance of ∼0.0.
Some instances do not have any near neighbors, and the most isolated instance
lies at a distance of ∼0.13 from its nearest neighbor. Isolated instances should
not be included in group comparisons, as they lack comparable (i.e., similar)
neighbors.

Histograms of the distances from x ∈ {X d,X f} to their nearest neighbor with
a different sensitive attribute are shown in Figure 1b and 1c. Most instances have
a nearest neighbor with a different sensitive attribute at a distance of ∼0.0, with
maximum distances of ∼0.14 and ∼0.13, respectively. In Figure 1b, for example,
the relevant attributes causing the distance of 0.14 are priors_count and age,
implying that the two instances are equal in terms of all other relevant attributes.
The deprived instance in question is 45 years old with 38 prior crimes, while the
favored instance is 56 with 17 priors. Since m is based on dataset-specific weights
and attribute values, it can vary between datasets. For the COMPAS dataset, a
distance of 0.14 already indicates a large difference between instances. Distances
in Figures 1b and 1c are between nearest neighbors, implying that a fairness
definition based on k nearest neighbors (e.g., k = 1) would already require equal
treatment of dissimilar instances. It is even possible that more instances exist
that are (more) isolated, as only histograms for the nearest neighbors are plotted.
Figure 1d displays the distribution of the number of neighbors for significant
unfairness scores, with Q1 indicating the first quartile. It reveals that significant
scores are based on relatively many neighbors. Using all near neighbors within
a distance m for an instance would be more accurate and fairer than using only
the k nearest neighbors with the fairness definition of Lenders and Calders [15].

Distribution of Unfairness Scores For ∼17% of x ∈ {X d−,X f+}, no near
neighbors exist; about 44% of these instances fail to meet the assumptions of the
Z-test, and ∼27% have insignificant unfairness scores. Consequently, the propor-
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(a) Distance ∀x ∈ D (b) Distance ∀x ∈ X d−

(c) Distance ∀x ∈ X f+ (d) Distribution of number of neighbors

Fig. 1: Histograms determining the unfairness scores

tion of instances that received an unfairness score (Un) is ∼0.12. Since many
instances have few near neighbors and/or low unfairness scores, it is crucial to
exclude distant neighbors and assess the significance of unfairness scores. His-
tograms of p-values for all scores can be found in our code on GitHub. Figure
2a gives the frequency distribution of all the significant unfairness scores. Most
Dm-scores are around 0.17, while most Fm-scores are around 0.35, resulting in
an average unfairness score of Um ≈ 0.31. Some Dm-scores are negative, while
all Fm-scores are nonnegative, indicating reverse discrimination but no reverse
favoritism. Figure 2b shows the distribution of the unfairness scores after rela-
beling all deprived instances with Dk > 0. Favoritism persists post-relabeling,
indicating that most unfair favored instances are not near unfair deprived in-
stances. Thus, examining only deprived instances is insufficient, as favoritism
can occur without discrimination. Figure 2c presents the Dk-scores for deprived
instances. According to Lenders and Calders, Dk > t is considered unfair, where
t is set equal to Q3 + 1.5 · IQR ≈ 1.12 of the Dk-scores of favored instances
[15]. Since Q3 ≈ 0.59 is relatively high due to the prominent discrimination
against favored instances, t > 1, meaning no deprived instance is deemed unfair.
Conversely, Dm in (9) identifies 221 deprived instances as unfair. The discrep-
ancies between the unfair instances identified by Dm and Dk highlight the need
to compare only similar instances, consider reverse unfairness, and assess score
significance—factors that Dk does not address.
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(a) Distribution of Dm-/Fm-scores (b) Distribution of Dm-/Fm-scores af-
ter relabeling

(c) Distribution of Dk-scores

Fig. 2: Histograms of different unfairness scores

3.2 Group Fairness

For CDP-ME, eight clusters provided the best solution, with an average silhou-
ette score of 0.46. Silhouette scores below 0.51 indicate poor clustering, which
implies similar clusters and/or clusters with dissimilar instances. The most dis-
similar instances within a cluster are at a distance of 0.33 > m, due to the
relevant attribute r_charge_degree, implying similarity in all other relevant at-
tributes. The deprived instance in question has no charge, whereas the favored
instance has a charge degree of 1. CDP-ME requires equal treatment within each
cluster. To ensure this, all similar instances must be in the same cluster (i.e.,
no similar clusters should exist), while dissimilar instances should be in different
clusters. Poor clustering thus violates the ECJ’s principle of equal treatment.
The group unfairness using Dall in (1) for each cluster is 0.25, 0.13, 0.14, 0.21,
0.14, 0.21, 0.12, and 0.17. However, when using Um in (13), three clusters have no
unfair instances as the proportion Z-test assumptions are not met (see GitHub
for detailed cluster information). This indicates that the unfairness measured for
these instances is too small and/or the number of neighbors is insufficient. The
differences between unfairness measured with Dall and Um highlight the need to
assess the significance of unfairness in clusters.
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4 Discussion and Conclusion

This study addresses the limitations of existing fairness definitions, particularly
their inability to ensure comparisons among similar groups and account for both
discrimination and favoritism. Our fairness definition offers a holistic assessment
by incorporating individual similarity, reverse unfairness, and favoritism, im-
proving fairness evaluations in datasets and ML models. One key finding is that
our method improves on Lenders and Calders’ k-nearest neighbors approach,
which risks comparing dissimilar instances and violates the principle of treat-
ing like cases alike [15]. By introducing a threshold distance m to ensure only
similar instances are compared, our approach enables more suitable fairness eval-
uations, preventing misleading fairness assessments from inappropriate compar-
isons. Another key insight is that our method addresses both discrimination
and favoritism. This dual focus is crucial for comprehensive fairness evaluation,
as fairness involves not only mitigating harm to deprived groups but also pre-
venting undue benefits to favored ones. Our approach supports more balanced
fairness-aware algorithm design and opens the door to flexible unfairness preven-
tion by guiding the relabeling of both deprived and favored instances based on
their impact on overall model performance. Our approach ensures more reliable
between- and within-group similarity compared to clustering-based methods like
CDP-ME. CDP-ME’s suboptimal silhouette scores suggest poor clustering, po-
tentially violating equal treatment within groups. Unlike CDP(-ME), our method
identifies which group instances have the most unfair class labels, aiding unfair-
ness prevention.

One limitation of our method, common to many existing approaches, is the
requirement for a binary sensitive attribute. This poses challenges when the
sensitive attribute is non-binary, unobservable, or restricted by GDPR. For non-
binary attributes, values can be assigned to represent the deprived group; how-
ever, assessing unfairness becomes challenging when the sensitive attribute is
unobservable or prohibited [10, 22]. Future research could investigate how to
evaluate fairness without sensitive attributes. Furthermore, all fairness defini-
tions discussed in this paper lack insights into missing explanatory attributes,
and quantifying some moral values complicates their integration into a distance
function or CDP [6]. While similar treatment is essential for fairness, a trade-off
between a fairness definition and potentially biased human judgment is necessary
to ensure that no critical information is overlooked in decision-making.
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