
Exploring RL-based LLM Training for Formal
Language Tasks with Programmed Rewards

Alexander G. Padula1,2 and Dennis J.N.J. Soemers2

1 Department of Computer Science, ETH Zurich
2 Department of Advanced Computing Sciences, Maastricht University
apadula@student.ethz.ch, dennis.soemers@maastrichtuniversity.nl

Abstract. Proximal Policy Optimization (PPO) is commonly used in
Reinforcement Learning from Human Feedback to align large language
models (LLMs) with downstream tasks. This paper investigates the feasi-
bility of using PPO for direct reinforcement learning (RL) from explicitly
programmed reward signals, as opposed to indirect learning from human
feedback via an intermediary reward model. We focus on tasks expressed
through formal languages, such as mathematics and programming, where
explicit reward functions can be programmed to automatically assess the
quality of generated outputs. We apply this approach to a sentiment
alignment task, a simple arithmetic task, and a more complex game syn-
thesis task. The sentiment alignment task replicates prior research and
serves to validate our experimental setup. Our results show that pure
RL-based training for the two formal language tasks is challenging, with
success being limited even for the simple arithmetic task. We propose
a novel batch-entropy regularization term to aid exploration, although
training is not yet entirely stable. Our findings suggest that direct RL
training of LLMs may be more suitable for relatively minor changes,
such as alignment, than for learning new tasks altogether, even if an
informative reward signal can be expressed programmatically.

Keywords: Reinforcement Learning · Large Language Models · Formal
Languages.

1 Introduction

Program synthesis models such as Copilot [9] have quickly become indispensable
by improving productivity and making complex tasks more accessible. Signifi-
cant advancements in this field have been achieved by training general-purpose
Large Language Models (LLMs) to reproduce source code from widely used
programming languages. Current state-of-the-art coding models [16,18,26] are
trained using an auto-regressive next-token prediction objective, which maxi-
mizes the probability of predicting the next token in a sequence. Despite their
success across a wide range of language processing tasks, next-token prediction
suffers from the inherent limitation of being a surrogate objective, which can
at times diverge from a task’s true goals. When multiple valid solutions exist

2 A.G. Padula and D.J.N.J. Soemers

for a task, such as implementing a function, next-token prediction penalizes the
model for deviating from solutions that are overrepresented in the training data,
even if other solutions may be equivalent or superior. Moreover, coding models
trained with a next-token objective are not grounded in the outcomes of execut-
ing the code they generate. This disconnect can exacerbate existing tendencies to
produce near misses, where the generated code superficially resembles a correct
solution but contains subtle errors that prevent successful execution [9,4].

Reinforcement Learning (RL) [30] emerges as a natural paradigm to ground
models by training directly on a task’s true goals. However, in many (natural)
language tasks it is often difficult to explicitly program a reliable reward signal
to quantify useful properties (e.g., a response’s helpfulness or accuracy). RL from
Human Feedback (RLHF) circumvents this challenge by training an intermediary
critic model on a limited number of human evaluations collected from users
or reviewers [34]. The trained critic model produces rewards as evaluations of
the base model’s outputs, enabling the use of RL to further train the model
so as to generate outputs that maximize the intermediate rewards. Despite its
complexity, RLHF has become a popular and effective method for aligning pre-
trained LLMs with downstream tasks [22,23,21].

In the domain of programming, and more broadly structured languages, how-
ever, there is a distinctive opportunity to employ a more direct and contextually
appropriate training objective. Unlike natural language, code can be executed,
and its effects can be automatically evaluated and compared, offering a pathway
to explicitly programmed domain-specific reward functions. This eliminates the
need for human-in-the-loop evaluations and reward models, aligning the training
process more closely with how humans experiment and learn coding through a
continuous process of trial and error. This paper explores the idea of exploiting
this unique aspect of structured languages to train LLMs using reward signals
obtained from explicitly programmed functions as a direct training objective.

Recent research on applying RL to LLMs [15,29,32] has often relied on custom
implementations. In contrast, this paper makes only minimal adjustments to the
existing RLHF implementation in Hugging Face’s Transformers Reinforcement
Learning (TRL) library [33]. This approach aims to simplify reproducibility by
utilizing an established deep learning ecosystem.34

2 Background

Auto-regressive text generation tasks, such as program synthesis, can be mod-
eled, following the standard RL problem formulation, as a finite-horizon Markov
Decision Process (MDP). At any time step t, a state st ∈ S from a state space
S is characterized by the sequence of non-masked tokens from the beginning
of the sequence up to t. This representation captures the necessary context for
subsequent token generation. The action at ∈ A from an action space A at time
3 TRL fork with (batch-)entropy regularization: https://github.com/PadLex/trl.
4 Source code for experiments can be found at: https://github.com/PadLex/

Reinforcement-Learning-from-Explicitly-Programmed-Reward-Signals/tree/main.

https://github.com/PadLex/trl
https://github.com/PadLex/Reinforcement-Learning-from-Explicitly-Programmed-Reward-Signals/tree/main
https://github.com/PadLex/Reinforcement-Learning-from-Explicitly-Programmed-Reward-Signals/tree/main

Exploring RL-based LLM Training for Formal Language Tasks 3

t corresponds to selecting the next token to add from a predefined vocabulary,
extending the current state st by one token. A policy πθ, parameterized by tun-
able parameters θ, outputs a probability distribution over A conditioned on the
current state st. During training, the parameters θ are adjusted to maximize
observed rewards. A reward function R provides a scalar signal R(τ) for a tra-
jectory τ = (s1, a1, s2, a2, . . . , sn, an). Given the auto-regressive nature of the
task, where the final state sn encapsulates the entire sequence, the reward can
also be expressed solely in terms of sn as R(sn). In auto-regressive text genera-
tion, a discount factor of 1 (i.e., no discounting) is typically used as the MDP is
finite and there is no explicit preference for shorter solutions.

The field of RL [30] develops algorithms that update a policy’s parameters
based on experience, so as to maximize the rewards collected by the policy in
future trajectories. Policy gradient methods define a differentiable objective func-
tion L(θ), which can be maximized using optimizers such as Adam or Stochastic
Gradient Ascent to improve the policy’s performance. Proximal Policy Opti-
mization (PPO) [28] has become the de facto standard for RL-based training of
LLMs following its use in RLHF. Schulman et al. [28] originally proposed two
variants of PPO, both aiming to maximize the surrogate objective LCPI(θ):

rt(θ) =
πθ(at|st)
πθold(at|st)

, LCPI(θ) = Êt[rt(θ)Ât],

where the expectation estimator Êt[. . .] measures the empirical average over
a finite batch of samples. The ratio rt(θ) moderates the extent of the policy
updates based on how much more or less likely the action at is under the new
policy πθ compared to the previous policy πθold . Compared to a traditional policy
gradient objective [1], this surrogate objective gives more conservative updates
and generally leads to a more stable learning process [28]. The advantage Ât

estimates the relative benefit of taking the action at compared to all other actions
available in st, weighted by their probability under πθ. It is used to isolate the
effect of specific actions from the general quality of the states in which they
are taken. Using the Bellman equation [5,30], we can express the advantage as
Ât = Rt + V (st+1) − V (st), where V (s) is the value (expected sum of future
rewards) of a state s. A value function (e.g., neural network) trained to minimize
the mean squared error between predicted and observed values estimates V .

While both variants of PPO aim to maximize LCPI(θ), they differ in the
constraints that they employ to avoid overly aggressive gradient updates. The
Clipped Surrogate Objective variant of PPO disincentivizes rt(θ) from moving
outside of the interval [1− ϵ, 1 + ϵ]:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
The Adaptive KL Penalty Coefficient variant of PPO penalizes large changes to
the policy πθ(at | st) by measuring the Kullback–Leibler (KL) divergence [14]
between πθold(at | st) and πθ(at | st):

LKLP (θ) = Êt

[
rt(θ)Ât − βKLKL[πθold(at | st), πθ(at | st)]

]

4 A.G. Padula and D.J.N.J. Soemers

An entropy regularization term LENT is often added to the objective function
to encourage exploration and smoothen the optimization landscape [3]:

LENT (θ) = −βENTÊt

[∑
a∈A

πθ(a | st) log πθ(a | st)

]
(1)

We use the TRL implementation [33] of PPO as our baseline, which is based
on a variant of PPO that has become the standard for RLHF [34]. It differs
from common (non-RLHF) implementations by using both a Clipped Surrogate
Objective and an Adaptive KL Penalty, and dropping the entropy regularization
term. Furthermore, its KL divergence is relative to the initial policy, instead of
the policy at the previous training step. This is because in RLHF, the initial
policy (usually a foundation model pre-trained on a substantial amount of data)
is assumed to be close to the final one, and care must be taken to ensure that the
policy does not fool the reward model by generating out-of-distribution samples.

3 Batch-Entropy Regularization

The standard entropy regularization term of Equation (1) encourages exploration
by penalizing the policy for drifting away from the uniform policy on the basis of
individual states: within a training batch, every state with a highly non-uniform
policy receives a sizeable penalty. However, a potential failure mode of RL-based
training may not just be a lack of exploration on a per-state basis, but rather
a lack of exploration across the state space. A strong policy will often need to
put most of its probability mass on a single (best) action per state—a solution
that conflicts with the standard entropy regularization—but would typically be
expected to still pick different actions across different states.

We propose a novel batch-entropy regularization term, designed to encourage
the policy to choose diverse actions for different states within the same batch,
without penalizing it for having a highly non-uniform policy for individual states:

LBENT (θ) = −βBENT
∑
a∈A

Êst∼B [π(a | st)] log Êst∼B [π(a | st)] , (2)

where Êst∼B denotes the empirical mean over all states st in a batch B. Such a
batch-entropy term was previously used to analyze and evaluate the behavior of
trained RL models [10], but our use as a regularization term is novel.

4 Language Model Fine-tuning Tasks

In this paper, we consider three different RL-based fine-tuning tasks for language
models. Firstly, a sentiment alignment task (Subsection 4.1)—for which success-
ful results are known to be feasible from prior work [12]—is used to verify the
correctness and compatibility of our TRL-based implementation and experiment
setup. Secondly, a synthetic arithmetic task (Subsection 4.2) is used as a formal

Exploring RL-based LLM Training for Formal Language Tasks 5

language task which is simple enough to rapidly generate substantial training
data. Thirdly, we consider the complex task of synthesising (novel) games in
Ludii’s formal game description language [7,24] (Subsection 4.3). This task is
particularly compelling due to the scarcity of training samples—which limits
the effectiveness of supervised learning—and the availability of established re-
ward metrics to assess the quality of newly generated Ludii games [31].

4.1 Sentiment Alignment Task

We initially seek to replicate results from prior research [12] in order to verify
that the models we employ are compatible with TRL and confirm that the modi-
fications we make to TRL–—adding entropy and batch-entropy losses, removing
the KL penalty, and replacing the trained reward model with a programmed
reward function—–do not compromise the integrity of the experimental setup.

The task is to fine-tune GPT-2 [25] to generate positive movie reviews using
RL. Initially, GPT-2 is pre-trained using a conventional masked language mod-
eling (MLM) objective on the Stanford IMDB dataset [20]. Then, using PPO,
the model is trained to complete reviews from the dataset while imbuing them
with a positive sentiment. As part of the RLHF process, generated samples are
evaluated by a reward model. For this purpose, the research we are reproducing
employs a variant of DistilBERT [27] that was fine-tuned on user-labeled re-
views in the IMDB dataset. As an alternative training method, we also replace
the conventional reward model with an automated signal. For this, we use the
VADER [13] implementation from NLTK [6], a rule-based sentiment analysis
algorithm that returns a score between -1 and 1, which we use as a reward signal
that quantifies how negative or positive the generated reviews are.

4.2 Synthetic Arithmetic Task

We define a simple arithmetic task designed to elucidate the potential advantages
offered by RL-based training over a traditional MLM objective. In this task,
n = 5 coefficients, c1, c2, . . . , cn, are independently and uniformly drawn from
the set of integers {0, 1, . . . , 9}. These coefficients are summed to form an initial
expression, Y0 = c1 + c2 + . . .+ cn. The task simplifies Y0 through a series of n
steps, where at each step i, two randomly chosen, non-simplified terms from Yi−1

are resolved (i.e., added together), resulting in Yi. This process is repeated until
the final expression, Yn, is a single integer: the sum of all original coefficients.

Importantly, due to the random order of summations, the sequence of in-
termediate expressions Y1, Y2, . . . , Yn is non-deterministic. This randomness re-
stricts the effectiveness of an imitation learning strategy in minimizing its loss,
as it cannot leverage consistent sequential dependencies typically exploited in
MLM tasks. For example, the sum 6 + 10 + 7 + 1 + 3 might first simplify to
6 + 17 + 1 + 3, then to 23 + 1 + 3, followed by 23 + 4, and finally to 27, with
each step involving the addition of randomly selected terms from the previous ex-
pression. This task has properties that mirror program synthesis, where multiple
equally valid solutions exist and their correctness can be quantified.

6 A.G. Padula and D.J.N.J. Soemers

The reward function for RL-based training is designed to quantify the accu-
racy of the model’s generated expressions relative to the target expressions. It
assigns a scalar reward based on the absolute difference between the summed
value of the generated expression Gi and the correct expression Yi:

R(Gi, Yi) =
2

1 + exp
(

|Gi−Yi|
10

)
The reward is 0 in cases where Gi is an invalid expression. This function ensures
that smaller errors lead to higher rewards, and significant errors, particularly
from invalid expressions, result in low rewards. The offset sigmoid function en-
sures that the reward scales smoothly between 0 and 1, providing a non-flat
reward landscape even early on in training. Note how teacher forcing prevents
the accumulation of errors between, but not within, expressions. In other words,
Gi−1 is discarded and the model is instead shown Yi−1 when computing Gi.
So if the model makes a mistake when generating Gi−1, that mistake will not
carry over when it prompted to generate Gi. In contrast to MLM objectives, this
reward signal is invariant to changes in the order in which terms are summed.

4.3 Ludii Game Synthesis Task

Ludii [24] is a general game playing system with a domain-specific language
(DSL) for describing rules of games [7]. Any description of rules in this language
can be compiled into a runnable game by the system. This DSL describes games
as trees of ludemes, which are high-level keywords corresponding to common
board game concepts such as board, is empty, is line, step, slide, and so on. For
an example, see the game description for the connection game Hex :

(game "Hex"
(players 2)
(equipment {

(board (hex Diamond 11))
(piece "Marker" Each)
(regions P1 {(sites Side NE) (sites Side SW)})
(regions P2 {(sites Side NW) (sites Side SE)})

})
(rules

(play (move Add (to (sites Empty))))
(end (if (is Connected Mover) (result Mover Win)))

)
)

Generating games in this DSL is ideally suited to exploring how a direct RL
process can overcome limitations arising from limited data availability. Although
board game representations in this DSL are succinct enough to fit within the
context length of modern LLMs and can be directly compiled into fully playable

Exploring RL-based LLM Training for Formal Language Tasks 7

and testable games, there are only in the order of 1000 existing board games im-
plemented in the Ludii DSL. The scarcity of available data makes it challenging
to train LLMs to learn Ludii using traditional supervised training methods.

To ease the model into learning the Ludii DSL, we define a fill-in-the-middle
task. In this task, uniformly randomly sampled parentheticals are removed from
game descriptions, and the model is trained to generate the missing sections. In
this way, the dataset will range from simple prompts requiring the model to only
fill in a small portion of a game, all the way to requiring the model to complete a
whole game from scratch when the root parenthetical is sampled. The following
example shows pre- and suffixes for the Hex game description, with the final
part of the equipment section of the description having been removed:

PRE:
(game "Hex"

(players 2)
(equipment {

(board (hex Diamond 11))
(piece "Marker" Each)
(regions P1 {(sites Side NE) (sites Side SW)})

SUF:
})
(rules

(play (move Add (to (sites Empty))))
(end (if (is Connected Mover) (result Mover Win)))

)
)

While the quality of a game description is more challenging to objectively
quantify than the correctness of, e.g., a simple program or a solution for the
arithmetic task, it is still possible to program a reasonable reward function.
Inspired by fitness functions used by prior work on evolutionary game generation
[8,31], we use a reward function based on the following five criteria:
1. Compilability C : S 7→ {0, 1}: A binary signal indicating whether the game

compiles, i.e., whether the game is syntactically valid and avoids semantic
errors such as using a piece that was not defined in the equipment ludeme.

2. Playability P : S 7→ {0, 1}: A binary signal indicating whether or not moves
can be made without crashing.

3. Balance B : S 7→ [0, 1]: A continuous signal defined as the largest difference
in winrates between any pair of players. For example, it returns 1 if all players
won the same number of games, and 0 if one player won them all.

4. Completion Rate F : S 7→ [0, 1]: The fraction of games that terminated
within 500 turns.

5. Decisiveness D : S 7→ [0, 1]: The fraction of games that did not end in a
draw. It returns 1 if all the games ended with a winner or loser.

The first criterion can be evaluated simply by having Ludii try to compile any
given game description, whereas the other four require playing the game. We use

8 A.G. Padula and D.J.N.J. Soemers

Fig. 1. Comparison between three different base models, being trained with PPO for
the sentiment alignment task, using (top) DistillBERT as a trained reward model, or
(bottom) VADER as programmatic reward function.

100 playthroughs (per generated game description) in which moves are selected
uniformly at random to compute these criteria. Using games played between
stronger agents could lead to more informative signals, but would have been
prohibitive in terms of computation time. Ultimately, for any generated game
description s, we use a reward of R(s) = 0 if s cannot be compiled (i.e., if
C(s) = 0), R(s) = 0.1 if it is not playable (i.e., if P (s) = 0), or the geometric
mean 1

3

(
B(s)

1
3 + F (s)

1
3 +D(s)

1
3

)
of the remaining three criteria otherwise.

5 Experiments

5.1 Sentiment Alignment Task

In this first experiment, we isolate each modification that we have introduced to
TRL to ascertain their individual impacts on the performance of the system for
the sentiment alignment task. In Fig. 1 (top), GPT-2’s training run is consistent
with Hugging Face’s original results [12]. We also find that, while Pythia 410M
converges as expected, LLama Code 13B fails to improve, despite the model
being otherwise capable of generating sensible reviews during inference. We hy-
pothesize that this is due to an incompatbility between (1) the version of TRL

Exploring RL-based LLM Training for Formal Language Tasks 9

Fig. 2. Comparison between three different values for the entropy regularization coef-
ficient βENT on the sentiment alignment task, using DistillBERT as a reward model.

we use, (2) 8-bit quantization, and (3) Llama-architecture models. GPT-2 and
Pythia 410M did not use quantization.

Replacing the sentiment rewards obtained from the DistillBERT model with
rewards calculated using the VADER algorithm, we find that the training runs in
Fig. 1 (bottom) are consistent with those using DistillBERT, with GPT-2 and
Pythia 410M steadily improving while LLama Code 13B shows no significant
gains. We do, however, note an increased variance in rewards obtained during
LLama Code 13B’s training run with VADER rewards.

Fig. 2 shows that raising the entropy regularization coefficient βENT produces
policies with higher entropy levels in their distributions over actions, as intended.
However, in terms of rewards, this appears to lead to weaker policies. In contrast,
when we raise the coefficient for our novel batch-entropy regularization variant
(Fig. 3), we can produce policies with higher levels of batch-entropy (note that
these numbers are not directly comparable to regular entropy number), with no
substantial detriment to rewards that the models converge to. We cannot rule out
that similar results might be possible with the standard entropy regularization,
but this would require at least a more thorough hyperparameter sweep.

Removing the KL divergence penalty (see Fig. 4) improved both the con-
vergence rate as well as the final performance. However, we cannot rule out the
possibility that allowing the model to drift further from the pretrained model
may have decreased the overall natural language quality of the outputs (e.g., in
terms of style or grammar) whilst improving in terms of positive sentiment.

10 A.G. Padula and D.J.N.J. Soemers

Fig. 3. Comparison between training with PPO using three different values for βBENT

on the sentiment alignment task, using DistillBERT as a reward model.

5.2 Arithmetic Task

In this experiment, we train a GPT-2-based model from scratch, tailored to
handle arithmetic expressions. The model is configured with a context size of
64 tokens and utilizes a new word-piece tokenizer. The tokenizer’s vocabulary
consists of integers from 0 to 45, and the symbols ‘+’ and ‘=’.

Fig. 5 illustrates training under a conventional masked language modeling
(MLM) objective. While the validation loss appears to converge, suggesting
learning under the MLM objective, the reward deteriorates over time. The model
learns to replicate approximately the correct structure, but fails to understand
the mathematical semantics of the task.

As pre-training was largely ineffective, we start PPO training for the arith-
metic task with an untrained model and no KL divergence penalty. Fig. 6 shows
training using PPO to be more effective. The model quickly learns to output
valid expressions and makes increasingly educated guesses toward the fully sim-
plified expression, though it does not converge to a perfect solution. Figs. 7
and 8 show that without entropy or batch-entropy regularization, the entropy
rapidly collapses, and the model converges on a naive policy which generates 23
regardless of the prompt it is given. This is a notable local optimum: it is the
(rounded) mean of the population of problems we can generate in this task, as
E [X1 +X2 +X3 +X4 +X5] = 22.5 when Xi ∼ {0, 1, . . . , 9}. With βENT = 0.3
or βBENT = 0.3, the entropy collapse can be delayed and the model’s performance
can exceed that of the naive policy. However, increasing βENT also appears to
destabilize training.

Exploring RL-based LLM Training for Formal Language Tasks 11

Fig. 4. Comparison between training using PPO with and without the KL penalty on
the sentiment alignment task, using DistillBERT as a reward model.

Fig. 5. Validation Loss (left) and Mean Reward (right) during supervised MLM train-
ing on the arithmetic task.

Fig. 6. Maximum and (smoothed) minimum rewards across six PPO training runs on
the arithmetic task without entropy or batch-entropy regularization.

5.3 Ludii Game Synthesis Task

The grammar of Ludii’s DSL is complex enough that an untrained policy will
face a flat reward landscape. This sets it apart from the arithmetic task, where
it was feasible to start PPO training from an untrained model. In this task it is
instead critical to first pre-train a minimally proficient model using a supervised
MLM objective. We define a GPT-2 model with a custom tokenizer made up of
all possible ludemes and primitives in the Ludii DSL. The GPT-2 variant was
trained to convergence on the Ludii fill-in-the-middle dataset. However, despite
efforts to simplify the tasks’ representation using string masking (masking arbi-

12 A.G. Padula and D.J.N.J. Soemers

Fig. 7. Comparison between training with PPO using three different values for βENT

on the arithmetic task. Rewards were smoothed to improve readability.

trary strings such as names of games and pieces) and a custom tokenizer for the
Ludii DSL, the model consistently failed to obtain a non-zero reward.

Fine-tuning Pythia 410M was more effective. Training this model to con-
vergence on the training split of the Ludii dataset led to a mean reward above
0.9 out of 1 for both the training and validation splits. This is largely possible
because the fill-in-the-middle dataset overrepresents smaller parentheticals. Fil-
tering the dataset to only games where at least 20% of the game description has
been masked, the model’s validation reward averages around 0.3, offering am-
ple space for improvement with reward-based training. While the Llama Code
13B model also achieved comparable pre-training performance, we were forced
to exclude it from further reward-based training since Fig. 1 suggests that Llama
Code 13B is incompatible with the version of TRL that we used.

None of the 11 PPO training runs that we conducted were able to improve
the policy on the Ludii game synthesis task (see Fig. 9). Runs with larger en-
tropy and batch-entropy regularization coefficients also appear to diverge more
quickly. We tried reintroducing the KL divergence penalty, but noted no differ-
ence in behavior. The fact that neither form of entropy regularization improved
the performance of PPO on this task suggests that the observed instability may
not be (solely) attributed to a lack of exploration. One possibility is that this
task is too complex and requires a substantially larger model than Pythia 410M.
It is also possible that PPO, or reinforcement learning more generally, may not
be sufficiently stable for LLM training tasks that go beyond RLHF-style align-

Exploring RL-based LLM Training for Formal Language Tasks 13

Fig. 8. Comparison between training with PPO using three different values for βBENT

on the arithmetic task. Rewards were smoothed to improve readability.

Fig. 9. Comparison between training with PPO using 11 different values for the
βENT and βBENT coefficients on the Ludii game synthesis task. Runs are labeled as
βENT, βBENT. Rewards were smoothed to improve readability.

ment, where minor parameter adjustments are made to encourage or discourage
previously acquired capabilities, possibly due to a loss of plasticity. [19,11].

6 Related Work

Prior work on using direct RL (as opposed to RL with trained reward models)
to fine-tune LLMs for formal language tasks tends to focus on settings for which

14 A.G. Padula and D.J.N.J. Soemers

ample training data is available, and pre-trained models are already highly ca-
pable, such as commonly used programming languages [15,29]. Outside of pure
RL methods, researchers have also looked towards novel inference strategies to
address similar shortcomings to those considered in this paper. Examples include
iterative procedures for program synthesis that feed results or error reports from
unit tests back into an LLM via additional prompts [17], adding lookahead search
on top of RL to improve the math abilities of LLMs [32], and combining an LLM
with evolutionary search for Ludii-based game synthesis [31].

7 Conclusions & Future Work

This paper explores the feasibility of using direct Reinforcement Learning (RL)
with programmed reward functions (as opposed to the more common trained
reward models used in Reinforcement Learning from Human Feedback) to fine-
tune LLMs for formal-language tasks which the model was not exposed to during
pre-training.

Our first experiments replicate prior work on sentiment analysis [12] and vali-
date the correctness of our TRL-based implementation [33]. We then designed an
arithmetic task that could not be effectively learned through supervised learning
alone. RL-based training proved to be more effective; however, without entropy
regularization, the model consistently converged to a naive local optimum. Both
classical entropy regularization and our novel form of batch-entropy regulariza-
tion improved upon this local optimum. While, theoretical reasoning and our
empirical results suggest that batch-entropy regularization provides greater sta-
bility, a comprehensive hyperparameter sweep would be needed to confirm this
observation. Our final experiments found that reward-based training of GPT-2
and Pythia 410M for the complex task of generating board games in Ludii’s
game description language was unstable.

Our initial observation that PPO is effective at model alignment, such as
encouraging a pre-trained model to write exclusively positive reviews, is con-
sistent with the literature. However, we found that this performance does not
generalize to unseen tasks, like learning to design board games, or even simply
summing numbers. Since PPO is a state-of-the-art RL training algorithm, our
findings highlight the need for fundamental improvements in RL training al-
gorithms for reward-based training of LLMs. Potential avenues worth exploring
include simpler methods like RLOO [2] and incorporating better domain-specific
inductive biases, such as task-specific positional encodings. For complex tasks,
such as game synthesis, it is also plausible that substantially larger models or
more computationally expensive search algorithms [32,31] are required. Never-
theless, exploring the limits of improving RL training before resorting to such
resource-intensive methods remains a compelling area of investigation.

Acknowledgments. We thank Aki Härmä for feedback on an early draft of this work.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Exploring RL-based LLM Training for Formal Language Tasks 15

References

1. Achiam, J.: Spinning Up in Deep Reinforcement Learning (2018), https://
spinningup.openai.com/en/latest/algorithms/vpg.html

2. Ahmadian, A., Cremer, C., Gallé, M., Fadee, M., Kreutzer, J., Pietquin, O., Üstün,
A., Hooker, S.: Back to basics: Revisiting REINFORCE-style optimization for
learning from human feedback in LLMs. In: Ku, L.W., Martins, A., Srikumar,
V. (eds.) Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). pp. 12248–12267. Association for
Computational Linguistics (2024)

3. Ahmed, Z., Roux, N.L., Norouzi, M., Schuurmans, D.: Understanding the impact
of entropy on policy optimization. In: Proceedings of the 36th International Con-
ference on Machine Learning. PMLR, vol. 97, pp. 151–160 (2019)

4. Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang,
E., Cai, C., Terry, M., Le, Q., Sutton, C.: Program synthesis with large language
models (2021), https://arxiv.org/abs/2108.07732

5. Bellman, R.: Dynamic Programming. Dover Publications (1957)
6. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing

Text with the Natural Language Toolkit. O’Reilly, Beijing (2009). https://doi.org/
http://my.safaribooksonline.com/9780596516499, http://www.nltk.org/book

7. Browne, C., Soemers, D.J.N.J., Piette, É., Stephenson, M., Crist, W.: Ludii lan-
guage reference. ludii.games/downloads/LudiiLanguageReference.pdf (2020)

8. Browne, C.B.: Automatic Generation and Evaluation of Recombination Games.
Phd thesis, Faculty of Information Technology, Queensland University of Technol-
ogy, Queensland, Australia (2009)

9. Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan, J.,
Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger,
G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such, F.P.,
Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A., Guss,
W.H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain,
S., Saunders, W., Hesse, C., Carr, A.N., Leike, J., Achiam, J., Misra, V., Morikawa,
E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P.,
McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., Zaremba, W.: Evaluating
large language models trained on code (2021)

10. Dereventsov, A., Starnes, A., Webster, C.: Examining policy entropy of reinforce-
ment learning agents for personalization tasks. https://arxiv.org/abs/2211.11869
(2024)

11. Dohare, S., Hernandez-Garcia, J.F., Lan, Q., Rahman, P., Mahmood, A.R., Sutton,
R.S.: Loss of plasticity in deep continual learning. Nature 632, 768–774 (2024)

12. Face, H.: Tune gpt2 to generate positive reviews (May 2022), https://huggingface.
co/docs/trl/v0.1.1/en/sentiment_tuning

13. Hutto, C.J., Hutto, C.J., Éric Gilbert, Gilbert, E.: Vader: A parsimonious rule-
based model for sentiment analysis of social media text. International Conference
on Web and Social Media (2014). https://doi.org/10.1609/icwsm.v8i1.14550

14. Kullback, S., Leibler, R.A.: On information and sufficiency. The Annals of Mathe-
matical Statistics 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694,
https://projecteuclid.org/euclid.aoms/1177729694

15. Le, H., Wang, Y., Gotmare, A.D., et al.: Coderl: Mastering code generation through
pretrained models and deep reinforcement learning. Advances in Neural Informa-
tion Processing Systems 35, 21314–21328 (2022)

https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://arxiv.org/abs/2108.07732
https://doi.org/http://my.safaribooksonline.com/9780596516499
https://doi.org/http://my.safaribooksonline.com/9780596516499
https://doi.org/http://my.safaribooksonline.com/9780596516499
https://doi.org/http://my.safaribooksonline.com/9780596516499
http://www.nltk.org/book
ludii.games/downloads/LudiiLanguageReference.pdf
https://arxiv.org/abs/2211.11869
https://huggingface.co/docs/trl/v0.1.1/en/sentiment_tuning
https://huggingface.co/docs/trl/v0.1.1/en/sentiment_tuning
https://doi.org/10.1609/icwsm.v8i1.14550
https://doi.org/10.1609/icwsm.v8i1.14550
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://projecteuclid.org/euclid.aoms/1177729694

16 A.G. Padula and D.J.N.J. Soemers

16. Li, R., Allal, L.B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M.,
Akiki, C., Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T.Y., Wang, T.,
Dehaene, O., Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., Gon-
tier, N., Meade, N., Zebaze, A., Yee, M.H., Umapathi, L.K., Zhu, J., Lipkin, B.,
Oblokulov, M., Wang, Z., Murthy, R., Stillerman, J., Patel, S.S., Abulkhanov, D.,
Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhattacharyya, U., Yu, W., Singh, S.,
Luccioni, S., Villegas, P., Kunakov, M., Zhdanov, F., Romero, M., Lee, T., Timor,
N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J., Dao, T., Mishra, M., Gu, A.,
Robinson, J., Anderson, C.J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C.M., Hughes, S., Wolf, T., Guha, A.,
von Werra, L., de Vries, H.: Starcoder: may the source be with you! (2023)

17. Liventsev, V., Grishina, A., Härmä, A., Moonen, L.: Fully autonomous program-
ming with large language models. In: Proceedings of the Genetic and Evolutionary
Computation Conference. p. 1146–1155. GECCO ’23, Association for Computing
Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3583131.3590481,
https://doi.org/10.1145/3583131.3590481

18. Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C., Ma, J., Lin, Q.,
Jiang, D.: Wizardcoder: Empowering code large language models with evol-instruct
(2023)

19. Lyle, C., Zheng, Z., Nikishin, E., Pires, B.A., Pascanu, R., Dabney, W.: Under-
standing plasticity in neural networks. In: Krause, A., Brunskill, E., Cho, K., Engel-
hardt, B., Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International Con-
ference on Machine Learning. Proceedings of Machine Learning Research, vol. 202,
pp. 23190–23211. PMLR (2023)

20. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies.
pp. 142–150. Association for Computational Linguistics, Portland, Oregon, USA
(June 2011), http://www.aclweb.org/anthology/P11-1015

21. Meta: Introducing meta llama 3: The most capable openly available llm to date
(Apr 2024), https://ai.meta.com/blog/meta-llama-3/

22. OpenAI: Aligning language models to follow instructions. https://openai.com/
research/instruction-following (2021)

23. OpenAI: Chatgpt: Optimizing language models for dialogue. https://openai.com/
research/chatgpt (2022)

24. Piette, É., Soemers, D.J.N.J., Stephenson, M., Sironi, C.F., Winands, M.H.M.,
Browne, C.: Ludii – the ludemic general game system. In: Giacomo, G.D., Catala,
A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J. (eds.) Proceedings of
the 24th European Conference on Artificial Intelligence (ECAI 2020). Frontiers in
Artificial Intelligence and Applications, vol. 325, pp. 411–418. IOS Press (2020)

25. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

26. Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu,
J., Sauvestre, R., Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J.,
Bhatt, M., Ferrer, C.C., Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T., Synnaeve, G.: Code llama:
Open foundation models for code (2024)

27. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter (2020)

28. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017)

https://doi.org/10.1145/3583131.3590481
https://doi.org/10.1145/3583131.3590481
https://doi.org/10.1145/3583131.3590481
http://www.aclweb.org/anthology/P11-1015
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/research/instruction-following
https://openai.com/research/instruction-following
https://openai.com/research/chatgpt
https://openai.com/research/chatgpt

Exploring RL-based LLM Training for Formal Language Tasks 17

29. Shojaee, P., Jain, A., Tipirneni, S., et al.: Execution-based code generation using
deep reinforcement learning. arXiv preprint arXiv:2301.13816 (2023)

30. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 2 edn. (2018)

31. Todd, G., Padula, A., Stephenson, M., Piette, É., Soemers, D.J.N.J., Togelius, J.:
GAVEL: Generating games via evolution and language models. In: Advances in
Neural Information Processing Systems 37 (NeurIPS 2024) (2024), accepted

32. Uesato, J., Kushman, N., Kumar, R., et al.: Solving math word problems with
process-and outcome-based feedback. arXiv preprint arXiv:2211.14275 (2022)

33. von Werra, L., Belkada, Y., Tunstall, L., Beeching, E., Thrush, T., Lambert,
N., Huang, S.: Trl: Transformer reinforcement learning. https://github.com/
huggingface/trl (2020)

34. Ziegler, D.M., Stiennon, N., Wu, J., Brown, T.B., Radford, A., Amodei, D., Chris-
tiano, P., Irving, G.: Fine-tuning language models from human preferences (2020)

https://github.com/huggingface/trl
https://github.com/huggingface/trl

	Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards

