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1 Introduction

Current neural networks build powerful representations of content. However, un-
like humans, they fail when confronted with unexpected situations and content
which is out of context [4], which exposes a lack of compositional understanding.
Compositionality enables humans to understand and generate a potentially infi-
nite number of novel situations by viewing the situation as a novel composition
of familiar simpler parts [8,2,3]. Since human language is characterized by re-
cursive structures which correspond with recursion that humans perceive in the
world [5,6], we hypothesize that representations that better encode the syntac-
tical structure of a sentence are less sensitive to a decline in performance when
confronted with unexpected situations. We test this hypothesis with the task of
2D visual object layout prediction given a natural language input sentence that
describes an unexpected situation. Figure 1a shows example situations, and 1b
gives an overview of our models.1

(a) (b)

Fig. 1: (a) Samples from the USCOCO dataset, (b) Model overview.

1 This abstract discusses earlier work by the authors [9]. Code, trained models and
the USCOCO data are available via https://github.com/rubencart/USCOCO.

https://github.com/rubencart/USCOCO
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2 Methods

1. We collect a test set of grammatically correct sentences and layouts, called
Unexpected Situations of Common Objects in Context (USCOCO), describ-
ing compositions of entities and relations that unlikely have been seen during
training (examples shown in figure 1a).

2. We train and evaluate transformer-based layout generation networks, that
take as input text representations computed by a pretrained and frozen text
encoder. We consider text encoders with various sizes (ranging from the
smallest GPT-2 to LLaMA-33B), in 2 categories.
(a) Implicit syntax: transformers trained for next token prediction (NTP)

such as GPT-2, LLaMA and a version of GPT-2 pretrained on a smaller
dataset [1,11,10,15]. These models are shown to have syntactic knowledge
encoded in their hidden representations [7,14,16].

(b) Explicit syntax: transformers trained for NTP that take a linearized
version of the constituency trees as input, e.g. “(NP a dog) (VP catches
(NP a frisbee))”, including tags and brackets as tokens, and that apply
attention mask constraints based on constituency structure [10,12].

3. We propose a novel structural loss function that better retains the syntactic
structure of the sentence in the text representations by enforcing the align-
ment between syntax tree embeddings [13] and the output embeddings of
the layout predictors. This loss function is evaluated both with models that
explicitly integrate syntax and with models that implicitly encode syntax.

3 Results
– Scores drop drastically on USCOCO vs.

on in-domain test data, for all models.
– Increasing model size or pretraining

data size gives advantage on in-domain
test data, but not on USCOCO, so this
does not solve the issue.

– Without structural loss, implicit and ex-
plicit syntax models perform similarly
on both test sets.

– With increasing structural loss weight,
performance on USCOCO improves for
explicit syntax models (fig. 2), but drops
for implicit syntax models.

– A human evaluation experiment con-
firms our quantitative findings.

Fig. 2: Recall vs. structural loss
weight for implicit (GPT-2) and
explicit (TG) syntax models.

Conclusion. We proposed a contrastive loss that enforces the encoding of syntax
in the representation of a visual scene and show that it increases generalization
to unexpected compositions if used with text encoders that explicitly integrate
syntax. The loss has the potential to be used in other generation tasks that
condition on structured input.
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