Efficiently grounding FOL using bit vectors

Lucas Van Laer, Simon Vandevelde, Joost Vennekens

! KU Leuven, De Nayer Campus, Dept. Of Computer Science,
2 Leuven.AlI — KU Leuven institute for AI, B-3000 Leuven, Belgium
3 Flanders Make - DTAI-FET

{lucas.vanlaer, s.vandevelde, joost.vennekens}@kuleuven.be

Introduction

Systems for declarative problem solving often use a “ground and solve” approach,
in which a user-made “high-level” specification is transformed into an equivalent
“low-level” specification that can be used by a solver to search for solutions. This
transformation involves grounding out first-order variables, by replacing them
with all possible values in their domain. Typically, we can then also reduce the
formula using information about the problem instance. For example:

Yo,y :x # y A border(z,y) = colour(z) # colour(y).
can be ground out to the following, using a known borders/2 to simplify:

colour(USA) # colour(Canada) A colour(USA) # colour(Mezico) A - - -

In our LPNMR 2024 paper [5], we present a new method to efficiently perform
such grounding for first order logic by using bit vectors to leverage the Single
Instruction, Multiple Data (SIMD) parallelism of modern processors.

Implementation

In essence, our implementation relies on calculating the satisfying sets of for-
mulas. A satisfying set for a formula ¢ with free variables z1, ..., x, consists of
those tuples of domain elements dy,...,d, that satisfy the formula. For exam-
ple, consider the formula p(x) V ¢(y), with the domains of p and ¢ the natural
numbers from 1 to 3. If both predicates are defined (e.g., as p = {1, 3}, ¢ = {2}),
we can calculate the satisfying set of the formula by representing both as a bit
vector, and applying a logical or: [101]V [010] = [111]. Such bit vector operations
can be straightforwardly extended to other logical operations and quantification.

In the case where only some symbols are interpreted, the approach described
earlier can be used to simplify formulas using a bottom-up approach. Indeed,
when grounding away a quantifier, we do not need to consider all values of
a domain but can instead limit ourselves to the values that still matter. For
instance, if ¢(z) is interpreted in Vz : p(z) V ¢(x), we can effectively rewrite the
formula as Vz : —q(x) = p(z), and only ground out those domain values that
do not satisfy ¢. Any arbitrary formula containing interpreted symbols can be
re-written using this approach, thereby allowing us to (in some cases) greatly
simplify the resulting grounding.



2 L. Van Laer et al.

Evaluation

We implemented our bit vector-based grounding in a new grounder named
SLI [1]. It accepts problems formalized in the FO(:) language, an extension of
FO, which it grounds to SMT-LIB that is passed on to the Z3 solver. SLI is
written in Rust, and is available under the LGPLv3 license.

To evaluate the grounder, we implemented three grounding methods: the
bit vector approach presented in this paper (SLI vec), and a naive approach
of grounding by checking each tuple of domain elements the formula, with and
without simplification (SLI naive and SLI no reduc). We also include gringo
v5.7.1 [4] and IDP-Z3 v0.11.1 [3] solvers in our benchmark. The benchmark is
run on a Xeon Silver 4210R, CPU with 16 GB of RAM with a timeout of 600
seconds.

To benchmark grounding, we used a number of benchmarks that require only
trivial solving (CI, CS and TG), and split the first two into SAT and UNSAT
instances. In addition, we also included four benchmark from the ASP2013 com-
petition (GG, GC, PPM, WSP). For more information, we refer to the full text.
All benchmarks and scripts are available online [2].

Table [I] shows the average grounding time for each instance. The averages
have been calculated by running all the instances of each benchmark, with time-
outs omitted from the averages but listed between parentheses instead. The
grounding averages show that SLI vec and SLI naive both outperform the other
approaches on most benchmarks. Of these two, SLI vec seems faster overall, but
the difference is never very large. However, the TG benchmark shows a weak-
ness of the SLI vec approach. In this benchmark, the goal is to identify all edges
that form triangles in a graph, for which the bit vectors need to reserve a bit
position for every one of the n3 potential triangles. Gringo vastly outperforms all
SLI approaches here, as its bottom-up approach only considers the O(n?) actual
edges in the graph. On the ASP competition benchmarks, SLI vec and gringo
both alternate as being the fastest.

To conclude, our paper presents a novel grounding method for FOL using
bit vectors. Through our evaluation, we have shown that it can be considered
competitive w.r.t other state-of-the-art approaches.

Table 1: Average grounding time in seconds for given benchmark

Benchmark SLI vec SLI naive SLI no reduc gringo IDP-Z3
CI-SAT(50) 0.920 0.860 2.179(30) 3.744 timeout
CI-UNSAT(50) 0.681 0.806 1.661(28) 2.844 timeout
CS-SAT(50) 0.774 0.893 1.771(24) 3.429 timeout
CS-UNSAT(50) 0.765 0.710 1.764(31) 3.604 timeout
TG(11) 0.075(4) 2.06(5) 3.57(6) 0.0238 6.81(6)
GG(10) 0.035(2) 0.045(2) 0.036(2) 0.036(3) 0.232(2)
GC(60) 0.052(42) 0.068(42) 0.082(43) 0.024(32) 0.309(42)
PPM(30) 0.069 0.097(5) 0.084 7.810(4) 2.55(1)

WSP(30) 0.031 0.033 0.0304 0.0165 0.205




Efficiently grounding FOL using bit vectors 3

References

1. https://gitlab.com/EAVISE/s1i/SLI

2. https://gitlab.com/EAVISE/sli/vectorized_interpretation_benchmark

3. Carbonnelle, P., Vandevelde, S., Vennekens, J., Denecker, M.: IDP-Z3: A reasoning
engine for FO (.). arXiv preprint arXiv:2202.00343 (2022)

4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo (2017)

5. Van Laer, L., Vandevelde, S., Vennekens, J.: Efficiently grounding fol using bit
vectors. Proceedings of LPNMR 2024 (2024)


https://gitlab.com/EAVISE/sli/SLI
https://gitlab.com/EAVISE/sli/vectorized_interpretation_benchmark

	Efficiently grounding FOL using bit vectors

