
Counterexamples to RL approaches blending
search and learning for problem-solving

Brieuc Pinon[0000−0001−5727−932X], Jean-Charles Delvenne[0000−0003−2356−7790],
and Raphaël Jungers[0000−0002−7789−0940]

Department of Mathematical Engineering, UCLouvain
Louvain-la-Neuve - Belgium

{brieuc.pinon,jean-charles.delvenne,raphael.jungers}@uclouvain.be

Abstract. How can learning be leveraged to accelerate problem-solving,
in Automated Theorem Proving for example? While various methods
have been proposed in the literature, this paper examines the limitations
of three prominent Reinforcement Learning approaches: the Bellman
equation for learning value functions, Hindsight Experience Replay for
learning universal value functions, and a divide-and-conquer strategy
applied to tactic-based theorem proving. We construct counterexamples
of seemingly simple problems that are provably intractable for these
methods. Our findings reveal that these algorithms can fail to effectively
utilize critical information about the problems, leading to significant
inefficiencies.

Keywords: Reinforcement Learning Theory · Reasoning · Problem-
Solving.

1 Introduction

One of the main goals of Artificial Intelligence is problem-solving: given a problem,
the objective is to find a solution [10]. In the context of Automated Theorem
Proving (ATP), for example, this involves finding a proof of a given theorem
from a set of axioms within the constraints of a logic system. Since this must be
done under constrained computational resources, algorithms are designed to find
a solution quickly.

A promising idea to design these efficient algorithms is to blend search and
learning, where learning is leveraged to accelerate the search. These algorithms
repeatedly attempt to construct solutions, leveraging feedback from previous
attempts to learn to guide the next constructions.

This paper examines the theoretical limitations of current Reinforcement
Learning approaches blending search and learning to enhance our understanding
and support the development of more effective algorithms. We focus on three
specific approaches:

– The Bellman equation This Dynamic Programming approach optimizes
objectives over sequences of decisions by associating a state with each decision-
making point. It can be combined with Machine Learning to learn a value

2 B. Pinon et al.

function that predicts the value of the objective from a given state. The
Bellman equation ensures the consistency of these estimates: a state is
promising only if it leads to other promising states. Usually, algorithms using
this approach iteratively follow decisions that maximize estimated values and
enforce the Bellman equation across visited states. This method forms the
foundation of many Reinforcement Learning (RL) algorithms, with various
adaptations [15].

– Hindsight Experience Replay (HER) [1] HER builds upon the Bellman
equation to learn universal value functions [16,11]. Assuming that the ob-
jective is to reach some goal-state, a standard value function only estimates
the value of a state in terms of its ability to reach this goal. In contrast, a
universal value function predicts the reachability of any state from any other
state. HER utilizes the states encountered during the learning process to
learn this universal value function, leveraging richer feedback than a simple
binary outcome of whether the goal was reached or not.

– Divide-and-conquer We refer to several algorithms in the Automated
Theorem Proving (ATP) literature built upon tactic-based theorem proving
such as [9,5]. In tactic-based theorem proving, a theorem is broken down
into subgoals according to a chosen tactic, these subgoals are then further
decomposed by tactics until elementary true propositions are reached as in
the Lean theorem prover [7]. The algorithms here learn a value function that
estimates the provability of each subgoal. This value function is also learned
using Dynamic Programming. This approach allows to leverage feedback from
the constructed subgoals rather than only focusing on the main theorem.

We demonstrate that despite their strengths, implementations of these ap-
proaches can struggle with certain “easy” problems that are nevertheless provably
hard to solve for them. Our study examines algorithms that apply the core idea
of each approach, incorporating shortcuts for simpler theoretical analysis, such
as using some optimal values directly in the feedback.

Each counterexample problem targets a different algorithm but is based on a
common principle: combining a set of easy problems into one aggregated problem
that should be nearly as easy to solve than the original problems. However,
by carefully designing the aggregation, we can obscure the information from
each individual problem, forcing the algorithm to tackle all original problems
simultaneously rather than breaking them down into independent, simpler tasks.

This type of theoretical analysis was pioneered by [14], who constructed a
family of problems that model-free RL methods struggle to solve efficiently com-
pared to a model-based method with access to a predetermined goal. Subsequent
research expanded these findings by demonstrating a similar limitation broadened
to some model-based methods, moreover, it did not require a priori knowledge of
a goal [8]. Both of these works highlighted limitations in Bellman equation-based
methods by embedding critical information within unknown dynamics.

Our contributions are:

– Demonstrating a limitation for an algorithm based on the Bellman equation
across a family of problems with a known common dynamics across the

Counterexamples to RL approaches blending search and learning 3

problems. This extends the scenarios in which an inefficiency for a Bellman
equation-based method can be expected, such as in ATP.

– Identifying limitations in two additional approaches: Hindsight Experience
Replay and a divide-and-conquer strategy for tactic-based ATP.

Intuitively, the results of this paper formalize the incapacity of these algorithms
to efficiently “learn from failure”. A common thread in our counterexamples is
that failed attempts provide minimal useful information to learn to guide the
construction of a solution.

2 Preliminaries

We note [n] = {1, . . . , n} the set of the n first natural numbers. For a vector
x ∈ Sn, with some set S and n ∈ N, we note x≤i(/x<i) the vector restricted
to the first i(/i − 1)th coordinates. An index list I over n ∈ N is a sequence
of numbers in [n]. For I an index list over n, xI is the vector composed of the
values of x at the coordinates in I. For x and y two vectors, we note [x, y] their
concatenation.

We use the name variable for the value at some coordinate in a vector.

3 The Bellman equation

We identify a limitation on a Bellman equation-based method for the family of
SAT instances. We define Algorithm 1 implementing the Bellman equation to
learn a value function and guide the search for solutions to a SAT instance. Then,
we state in Theorem 1 that aggregating SAT instances can produce intractable
problems for Algorithm 1, this holds even if the original SAT instances are
relatively easy to solve individually.

We model the problem of finding a solution for some SAT instance with n
binary variables as a sequence of n binary decisions. Specifically: given the SAT
instance and the ith first fixed bits, fix the i+ 1th variable to 0 or 1.

The Bellman equation applied on some value function v over this sequence of
decisions amounts to:

v(x≤i; p) = max{v([x≤i, 0]; p), v([x≤i, 1]; p)}, (1)

where x≤i is a partial candidate solution of length i and p is the problem to solve.
Algorithm 1 implements this equation. The algorithm begins with an initial

set of hypotheses for the value functions V . It iteratively samples sequences of
decisions to construct candidate solutions guided by V . At each state of the
construction, the Bellman equation is applied to eliminate inconsistent value
functions from V , continuing this process until a solution is found.

The set of hypothesis V acts as a prior over possible value functions, and
learning occurs during the search by enforcing the Bellman equation on this set.
For example, the set can correspond to a set of decision trees or neural networks.

4 B. Pinon et al.

This prior can encode learned knowledge about solving SAT instances because
any value function not in V reduces the set of possible solutions and accelerates
the search.

Likewise, the set V can also encode uncertainties. Several value functions in
V that provide different estimates represent incertitude and force the algorithm
to explore possibilities before discarding them with the Bellman equation.

To facilitate our theoretical analysis, we introduce stronger feedback than
the Bellman equation at some states. In the first steps of a construction, the
algorithm applies the standard Bellman equation, but after a predetermined index,
it replaces the Bellman equation with a condition that enforces any hypothesis
function in V to match the optimal values.

We now define problems, solutions, (optimal) value functions, and conditions
that are assumed to hold for our result.

Definition 1. A problem p is a binary number in {0, 1}∗ with an associated
number n ∈ N of variables. The problems are all linked to a function Check:
{0, 1}n × {0, 1}∗ → {False,True} that correspond to a verifier for CNF-SAT
instances [2].

Definition 2. A solution x to problem p over n variables is a binary vector
{0, 1}n for which Check(x, p) returns True.

Definition 3. An aggregation of problems is a problem p over n variables defined
by K problems p1, . . . , pK and K non-intersecting index lists I1, . . . , IK over n.

The number of variables n must be the sum of the number of variables of
each problem p1, . . . , pK . The problem p is the concatenation of all the problems
with their variables mapped by the index lists such that Check(x, p) is True iff
Check(xI1 , p1),. . . , Check(xIK , pK) are all True.

Definition 4. A value function is a function taking in input a binary vector in
{0, 1}i with i ∈ [n] and a problem over n variables, and outputting in {0, 1}.

Definition 5. A value function v is optimal for problem p over n variables if for
all x ∈ {0, 1}i, v(x; p) is 1 iff there exists y ∈ {0, 1}n−i such that Check([x, y]; p)
returns True.

Definition 6. A policy is a randomized function that provided a problem, outputs
a candidate solution.

A policy is symmetric with respect to a set of value functions V if it can be
written as the following process: Starting from an empty vector, incrementally
sample a binary variable xi and concatenate it to construct x≤i until a complete
vector x ∈ {0, 1}n is obtained. The binary variables xi must be sampled according
to the sets V0 = {v([x<i, 0], x<i; p)| v ∈ V } and V1 = {v([x<i, 1], x<i; p)| v ∈ V }
such that the probabilities of xi = 0 and xi = 1 must be equivariant to those sets,
Pr(xi = 0| (V0, V1), x<i; p) = Pr(xi = 1| (V1, V0), x<i; p).

Definition 7. A value function v is monotonic if for any problem p with n
variables, any x ∈ {0, 1}n, and any i, j ∈ [n] with i < j, v satisfies v(x≤i; p) ≥
v(x≤j ; p).

Counterexamples to RL approaches blending search and learning 5

Algorithm 1 Search with the Bellman equation.
Bellman_Search is the main function, it iteratively samples candidate solutions
guided by a set of value functions V . In parallel, the Bellman equation is it-
eratively enforced on V along already sampled candidates. The subfunction
Bellman_equation enforces these equations. The procedure is parametrized by
i∗ and v∗ that forces the procedure to use the optimal values furnished by v∗

from index i∗. The candidates are sampled according to πV t

(p) a policy that is
symmetric w.r.t. V t (Definition 6).
Inputs: V 0 : an initial set of value functions; p : the problem to solve; i∗, v∗ : parameters
to provide the true value function (v∗) at index i∗

function Bellman_Search(V 0, p; i∗, v∗)
for t← 0, 1, . . . do

xt ∼ πV t

(p)
if Check(xt, p) then

return xt

V t+1 ← V t

for i← 1, . . . , n do
V t+1 ← Bellman_equation(V t+1, xt, i, p; i∗, v∗)

function Bellman_equation(V, x, i, p; i∗, v∗)
if i ≥ i∗ then

return {v ∈ V | v(x≤i; p) = v∗(x≤i; p)}
else

return {v ∈ V | v(x≤i; p) = max{v([x≤i, 0]; p), v([x≤i, 1]; p)}}

We have defined everything needed to state our result. Theorem 1 aggregates
several problems into one problem and states under assumptions that this aggre-
gated problem is intractable for Algorithm 1. The proof relies on the fact that
while the Bellman equation is sufficient to identify an optimal value function and
produce a solution, it does so very slowly in this case. In particular, the Bellman
equation relies on the outputs of the value function to learn, however, a failure
to produce a solution can be attributed to many different decisions, such that
the output 0 of the value function (indicating a failure) does not provide much
feedback. This poor feedback does not inform the algorithm on why the attempt
failed and how to learn to anticipate other failures.

Theorem 1 constructs a problem with this difficulty to attribute a failure by
forcing Algorithm 1 to take several hard independent binary decisions from the
start, and if one of these decisions is incorrect, the value is zero and the attempt
failed.

Theorem 1. Let p be a problem over n = K2 variables defined by an aggregation
of problems p1, . . . , pK over K variables with index lists I1, . . . , Ik, . . . , IK where
the first element of each Ik is k.

Let V and V1, . . . , VK be sets of value functions.
Assume:

6 B. Pinon et al.

1. The set V factories into V1, . . . , VK , i.e. for all v ∈ V there exists v1 ∈
V1, . . . , vK ∈ VK such that for all x ∈ {0, 1}n and all i ∈ [n], v(x≤i; p) =∏
k∈[K]

vk(xIk∩[i]; p).

2. For all k ∈ [K] and any v ∈ Vk there exists v′ ∈ Vk such that v(0; p) = v′(1; p)
and v(1; p) = v′(0; p).

3. For all k ∈ [K], any vk ∈ Vk is monotonic.
4. For v∗ an optimal value function for problems p1, . . . , pK , for all k ∈ [K]

either v∗(0; pk) = 1 or v∗(1; pk) = 1.

Then Algorithm 1 with arguments V 0 = V , p = p, i∗ = K and v∗ an optimal
value function for problem p, runs for an expected time of at least 2

√
n−1.

Proof. By condition (4) the first variable of all problems p1, . . . , pK must be
either 0 or 1 to be a solution. Thus, any solution to problem p must have its first
K =

√
n variables equal to some unique binary vector x∗

≤K ∈ {0, 1}K .
We prove that Algorithm 1 treats symmetrically the sampling of these

first K = i∗ =
√
n binary variables until x∗

≤K is sampled for these vari-
ables. More formally, let (V 0, x0

≤K), (V 1, x1
≤K), . . . be the result of the stochastic

process induced by Algorithm 1, then for any index i ∈ [K] we can define
(V 0′, x0

≤K
′), (V 1′, x1

≤K
′), . . . where x′ is x with the ith bit flipped and V t′ is

constructed from V t. For all v ∈ V t we construct a corresponding v′ ∈ V t′ such
that v(x; p) = v′(x′; p) for all x ∈ {0, 1}[K]. We will prove that the two sequences
have the same probability when truncated to the first appearance of x∗

≤K in the
original sequence.

Since from this symmetry the expected first time of appearance of any
x≤K ∈ {0, 1}K is the same, we can derive the following lower bound on the
expected running time: 2K−1.

We now prove by induction that Algorithm 1 treats symmetrically (in the
sense described above) V t and the sampling of xt

≤K until x∗
≤K is sampled.

By assumption (1) and (2) the image of V 0 on p is invariant for any binary
vector of length less than K. Thus the distribution πV 0

(p) is also invariant over
{0, 1}K by symmetry of π (Definition 6).

The set V t evolves with three categories of operations: calling the Bellman
equation procedure with (a) i < i∗; (b) i = i∗; (c) i > i∗.

For (a), by the inductive assumption the set V t is symmetric and the policy
to sample xt

<K is also symmetric. The Bellman equation is solely a symmetric
function of xt

<K and V t, so the complete process to compute V t+1 is symmetric.
For (b), by the inductive assumption the distribution of xt

≤K is symmetric and
x∗
≤K has not been sampled thus v∗(xt

≤K ; p) is always 0. The Bellman equation
procedure process is symmetric with respect to xt

≤K and V t to produce V t+1.
For (c), the Bellman equation procedure applied with i > i∗ does not affect

the new set of value function V t+1. By contradiction, assume v ∈ V t is removed
by the Bellman procedure with i > i∗ and some xt. Also by assumption we
know xt

≤K ̸= x∗
≤K and thus v∗(xt

≤K ; p) = 0 and v∗(xt
≤i; p) = 0 since any correct

value function is monotonic. By (1) we know that v can be factorized into

Counterexamples to RL approaches blending search and learning 7

v1 ∈ V1, . . . , vK ∈ VK , since this last equation removes v, we know vk(x
t
≤i; p) = 1

for all k ∈ [K]. Assumption (3) implies vk(x
t
≤K ; p) = 1 for all k ∈ [K], and thus

v(xt
≤K ; p) = 1. However, we know that at loop t the Bellman procedure has been

applied earlier with the equation v(xt
≤K ; p) = 0. Consequently, the value function

v has been removed before and cannot be removed by the Bellman procedure
with i > i∗. ⊓⊔

What does the assumptions of Theorem 1 mean? Assumption (1) requires that
the prior over value functions V reflects the structure of the aggregated problem,
meaning that the value functions must be factorizable into value functions
corresponding to each individual sub-problem. This is a natural assumption since
an optimal value function for the aggregated problem must also be factorizable
into optimal value functions for the original independent sub-problems.

Assumption (2) implies a symmetry on V with respect to the first bit of each
sub-problem. With this condition, the prior V does not allow to decide optimally
the first bit of each sub-problem. This can be the case if deciding the first bit of
the SAT instance is inherently difficult. Importantly, this assumption does not
contradict the possibility that these sub-problems might be relatively easy; but
it suggests that the prior induced by V does not enable an immediate solution,
necessitating some degree of search.

Assumption (3) stipulates that the factorization of the value functions in
V —as required in Assumption (1)—must result in monotonic value functions.
This assumption is also natural since any correct value function for any SAT
instance must be monotonic.

Assumption (4) posits that the first bit of each sub-problem is critical to solving
that sub-problem. SAT instances exhibiting this property can be straightforwardly
constructed.

Why is Theorem 1 relevant? In intuitive terms, Theorem 1 suggests that if
given problems that are not directly solved by a (learned) prior over value
functions, then, aggregating these problems can produce a problem intractable
for a procedure relying on the Bellman equation with that prior. Interestingly,
this holds even if the individual problems are quickly solvable with minimal
search.

In other words, the Bellman equation can fail to leverage the decomposability
of an aggregated problem, thereby hindering the learning of an optimal value
function that could guide the search. We note that, in contrast, modern (conflict-
driven clause learning) SAT solvers straightforwardly leverage the structure of
an aggregated problem [4], and thus do not suffer from the identified issue.

Generality of the result. While our analysis focused on a specific algorithm
that uses the Bellman equation to learn value functions, we believe our findings
reveal a broader limitation on methods that rely on the Bellman equation. These
include model-free Deep RL methods like Deep Q-learning [6] and Proximal
Policy Optimization [12], as well as some model-based methods like AlphaZero
[13], all of which depend on the Bellman equation to learn to guide the search.

8 B. Pinon et al.

Although we use the SAT problem, we believe that the results generalize to
other hard problems such as Automated Theorem Proving.

4 Hindsight Experience Replay

Provided a goal to achieve, a common approach in RL is to sample trajectories
using some initial exploration policy, then improve the policy by reinforcing
behaviors that lead to the goal. However, there is a common pitfall with this
approach: the goal can be hard to achieve with the initial policy, leading to a
lack of feedback to improve the policy.

To address this issue, Hindsight Experience Replay was introduced [1]. HER
deviates from traditional RL by learning a universal value function rather than
focusing only on the task-specific value function. A universal value function
estimates the reachability between states, predicting whether a particular state b
can be reached from another state a. To reach a desired goal-state g, actions are
taken that lead to states providing high estimates of reaching g.

This method has been applied in ATP, where random exploratory search often
fails to construct a proof for the desired theorem [3]. However, despite HER’s
design to create feedback in challenging environments with sparse rewards, it can
overlook critical information in problems that are relatively easy to solve.

To illustrate and prove this limitation, we construct a counterexample similar
to the previous section. In this example, a search guided by classical value
functions learned with the Bellman equation struggles to find a solution. Moreover,
learning a universal value function in this scenario leverages no more feedback
than learning a classical value function, leading to the same struggles in finding
a solution.

As in the previous section, we work with the family of SAT instances. We
also define a sequence of n decisions and corresponding states that incrementally
build a binary solution to the instance. However, we introduce an additional
final step with two possible states: True and False. Here, True indicates that the
constructed candidate solution is valid for the problem, while False indicates
otherwise. This final step provides a clear goal-state to HER: g = True.

We define the set of states S for a problem p over n variables as {0, 1}[n] ∪
{True,False}, with the set of actions being binary: {0, 1}.

Definition 8. Given a problem p over n variables its dynamics is:
Start in state [], at each step up to length n, the transition appends the chosen

action to the current state, resulting in a sequence of all actions taken. For a
state of length n represented by the binary vector x, the dynamics leads to True
if Check(x, p) = True; otherwise, it leads to False.

The operator Dp : S × {0, 1} → S implements that dynamics for problem p,
taking a state and a binary action as input and outputting the next state.

We now define universal value functions, learned by the method.

Definition 9. A universal value function takes as input a problem p and two
states in S, and outputs a binary value.

Counterexamples to RL approaches blending search and learning 9

Similar to the previous section, the Bellman equation is used for learning.
For a universal value function v, a problem p, a pair of states a and b, and the
operator Dp, the Bellman equation reads:

v(a, b; p) = max{v(Dp(a, 0), b; p), v(Dp(a, 1), b; p)}. (2)

This equation is implemented in Algorithm 2. At initialization, a set V of universal
value functions represents a (learned) prior for SAT-solving. This set is used
iteratively to guide the constructions of candidate solutions by attempting to
reach the goal-state g. In parallel, the equation is enforced on the set V to learn
from sampled constructions.

There are numerous pairs of states a, b to which this equation can be ap-
plied. Algorithm 2 enforces the equation for pairs of states sampled in the same
construction and with the goal-state g. This is a key feature of HER that we
replicate.

Now, we define several concepts for universal value functions that parallel
those defined for standard value functions in the previous section.

Definition 10. A universal value function is optimal for problem p over n
variables is a universal value function such that for any s1, s2 ∈ S, v(s1, s2; p)
is 1 iff from s1 there exists a sequence of action leading to s2 in the problem’s
dynamics.

Definition 11. A policy is a randomized function that provided a problem p
outputs a sequence of states that follows the dynamics.

A policy is symmetric with respect to a set of universal value function V
and a state g ∈ S if it can be written as the following process: Starting from an
empty vector, incrementally sample a binary variable xi and concatenate it to
construct x≤i until a complete vector x ∈ {0, 1}n is obtained. The binary variable
xi must be sampled according to the sets V0 = {v([x<i, 0], x<i, g; p)| v ∈ V } and
V1 = {v([x<i, 1], x<i, g; p)| v ∈ V } such that the probabilities of xi = 0 and
xi = 1 must be equivariant to those sets, Pr(xi = 0| (V0, V1), x<i, g; p) = Pr(xi =
1| (V1, V0), x<i, g; p).

Definition 12. A universal value function v is monotonic if for any problem p
with n variables and state any s ∈ S, any x ∈ {0, 1}n, and any i, j ∈ [n] with
i < j, v satisfies v(x≤i, s; p) ≥ v(x≤j , s; p).

Theorem 2. Let p be a problem over n = K2 variables defined by an aggregation
of problems p1, . . . , pK over K variables with index lists I1, . . . , Ik, . . . , IK where
the first element of each Ik is k.

Let V and V1, . . . , VK be sets of universal value functions and g = True be
the goal-state.

Assume:

1. The set V factories into V1, . . . , VK , v ∈ V iff there exists v1 ∈ V1, . . . , vK ∈
VK such that for all x ∈ {0, 1}n and all i ∈ [n], v(x≤i, g; p) =

∏
k∈[K]

vk(xIk∩[i], g; p).

10 B. Pinon et al.

Algorithm 2 Hindsight Experience Replay.
Similarly to Algorithm 1, candidate solutions are iteratively sampled guided
by a set V of universal value functions to reach a given goal-state g. This uses
policy πV t

symmetric w.r.t V t and g (Definition 11). Simultaneously, the Bellman
equation is enforced on V for pairs of sampled states and g.
Inputs: V 0 : an initial set of value functions; p : the problem to solve; g : a final
goal-state to reach; i∗, v∗ : parameters to provide the true value function (v∗) at index
i∗

function Hindsight_Experience_Replay(V 0, p, g; i∗, v∗)
for t← 0, 1, . . . do

st0, s
t
1, . . . , s

t
n, s

t
n+1 ∼ πV t

(p, g)
if sn+1 = g then

return stn ▷ stn is a solution to problem p

V t+1 ← V t

for i← 1, . . . , n do
V t+1 ← Bellman_equation(V t+1, sti, g, p; i

∗, v∗)
for j ← i+ 1, . . . , n+ 1 do

V t+1 ← Bellman_equation(V t+1, sti, s
t
j , p; i

∗, v∗)

function Bellman_equation(V, si, sj , p; i∗, v∗)
if i ≥ i∗ or j ≤ n then

return {v ∈ V | v(si, sj ; p) = v∗(si, sj ; p)}
else

return {v ∈ V | v(si, sj ; p) = max{v(Dp(si, 0), sj ; p), v(D
p(si, 1), sj ; p)}}

2. For all k ∈ [K] and any v ∈ Vk there exists v′ ∈ Vk such that v(0, g; p) =
v′(1, g; p) and v(1, g; p) = v′(0, g; p).

3. For all k ∈ [K], any vk ∈ Vk is monotonic.
4. For v∗ an optimal value function for problems p1, . . . , pK , for all k ∈ [K]

either v∗(0; pk) = 1 or v∗(1; pk) = 1.
5. For any v ∈ V , i, j ∈ [n] with i ≤ j ≤ n, x1 ∈ {0, 1}i, x2 ∈ {0, 1}j,

v(x1, x2; p) = v∗(x1, x2; p) for v∗ an optimal universal value function.
6. For v∗ an optimal universal value function for problem p, and any s ∈ S, if

v∗(s,False; p) = 1 then for any v ∈ V , v(s,False; p) = 1.

Then Algorithm 2 with arguments V 0 = V , p = p, g = g, i∗ = K and v∗ an
optimal universal value function for problem p, runs for an expected time of at
least 2

√
n−1.

Proof. We reduce our claim to that of Theorem 1. The distribution used to
sample candidate solutions follows the same constraints as in Theorem 1, with
the value functions that guide the search, v(.; p), being replaced by universal
value functions evaluated with the goal g: v(., g; p) for v ∈ V . The set V , when
applied with g, follows the same constraints as in the previous theorem, with the
exception that the Bellman equation is not only enforced with the final state g,
but also with the state False and states corresponding to partial solutions. For
the state False, by Assumption (6) either v is correct or the state must lead to a

Counterexamples to RL approaches blending search and learning 11

solution. Since the state did not lead to a solution when enforcing the Bellman
equation, the set V t is not impacted.

The Bellman equation procedure is also called with the second state corre-
sponding to partial solutions. By assumption (5), in that case, any universal
value function in V 0 (and thus V t) already matches the output of an optimal
universal value function.

Consequently, the set V t, when evaluated with g = True in Algorithm 2, is
updated in the same manner as in Algorithm 1, under the assumptions.

⊓⊔

Theorem 2 uses similar assumptions to Theorem 1. Assumptions (1,2) have
been adapted for universal value functions, while Assumptions (3,4) remain
unchanged. Assumptions (5) and (6) are newly introduced.

Assumption (5) requires that any universal value function in the initial set V 0

is optimal at predicting which partial candidate solutions can be reached from
a given state. This condition is satisfied by any optimal value function for the
problem and is straightforward to compute.

Assumption (6) requires that any value function in V 0 can determine whether
a partial candidate must lead to a full solution, regardless of subsequent actions.
This condition is also satisfied by any optimal universal value function.

This section demonstrates that a naïve application of HER and universal
value functions does not circumvent the issue identified in the previous section
regarding the Bellman equation with classic value functions. We made specific
choices in our implementation, and alternative choices could lead to different
algorithms with potentially distinct properties. For example, our final states
are limited to True or False to indicate whether the problem has been solved.
HER could potentially be applied with a different choice of dynamics or final
states, which might provide additional feedback to the algorithm. However, to our
knowledge, there are no proposals from the literature in that specific direction.

5 Divide-and-conquer

Recent works have explored the application of a divide-and-conquer strategy to
tactic-based Automated Theorem Proving (ATP) using Deep Learning [9,5]. A
tactic-based theorem prover decomposes a given theorem into subgoals, recursively
breaking down these subgoals until elementary true propositions are reached.
These decomposition rules, known as tactics, are predefined by the theorem
prover.

The main challenge for a prover algorithm is to find the appropriate tactics
to construct a proof. In the approach we study, policy or value functions are
learned via Dynamic Programming to guide the search.

Definition 13. We define a problem by:

– A set of possible propositions P ;
– A goal to prove g ∈ P ;

12 B. Pinon et al.

– A set of tactics T ∋ t : P → P ∗, each tactic takes a proposition as input and
produces a set of new propositions entailing the input-proposition.

For an input-proposition, a tactic proves it if it outputs an empty set. In
practice, not all tactics apply to every proposition. We say that a tactic is
admissible for a proposition if it can be applied to it. To represent non-admissibility,
we include a dummy proposition False in the set P . If a tactic t is not admissible
for a proposition x, then t(x) = {False} and any tactic applied to False will also
produce {False}.

A proof can be represented as a graph. Here, the goal is associated with a
node, and the application of a tactic generates a set of child nodes. The successive
application of tactics forms a tree of propositions, where the leaves entail the
goal. In this representation, a problem is solved when this tree has the goal as its
root, with the leaves followed by an empty set of child nodes.

Algorithm 3 implements a Dynamic Programming approach for this problem
following existing work [9,5]. The specific learning method used is not crucial to
our result; thus, we treat it as a parameter in our algorithm (procedure Learn).
Instead, our algorithm and argument in this section focus on the reliance on
value functions in this Dynamic Programming approach.

Although this divide-and-conquer strategy benefits from decomposing the
problem into independently solvable sub-problems, its effectiveness is contingent
upon the allowed decompositions. Our counterexample forces the algorithm
to make decisions before any meaningful decomposition occurs, breaking this
advantage.

We define a family of problems that are challenging for Algorithm 3. These
problems are parametrized by: a natural number n, which takes values of the
form 2L for some natural number L; and by a hidden binary word b ∈ {0, 1}n.
We now define the goal, the set of propositions, and the associated set of tactics.

The propositions in P are of the form (l, I,X) where:

– l is a natural number;
– I is an index list;
– X is a sequence of binary values the same size as I.

To these propositions, we add the dummy proposition False to the set P . For a
set S of propositions with identical first element l, we note l(S) this element.

The goal g is the proposition with (l = 0, I = (), X = ()).
The set of tactics T is composed of 4 tactics:

– Add 0: Taking in input a proposition (l, I,X) with l < n, it outputs {(l +
1, [I, l + 1], [X, 0])}.

– Add 1: Taking in input a proposition (l, I,X) with l < n, it outputs {(l +
1, [I, l + 1], [X, 1])}.

– Decompose: Taking in input a proposition (l, I,X) with n ≤ l < n+ L and
|I| = 2a for some natural number a > 1, it outputs {(l+1, I≤2a−1 , X≤2a−1), (l+
1, I>2a−1 , X>2a−1)}.

– Check: Taking in input proposition (l, I,X) with l = n+ L, I = (i), X = (x)
and x = bi, then it outputs the empty set {}.

Counterexamples to RL approaches blending search and learning 13

Algorithm 3 Divide-and-conquer.
The algorithm recursively samples tactics according to its policy to solve the
goal and any generated sub-goals. When the algorithm encounters a dead end
—indicated by a value function equal to 0— it halts and initiates a new attempt.
Simultaneously, a dataset is constructed with: propositions, tactics used, and
resulting estimated values. This dataset is then used to learn a policy and a value
function, where the learning method is an unspecified procedure Learn. The value
function v∗ returns 1 if all the propositions in a given set are provable; otherwise
it returns 0.
Inputs: g : the goal to prove; N : maximum number of tactics to apply by attempt; v∗ :
optimal value function; L∗ : value l at which the optimal value function must be used.

function Divide_and_conquer(g, N ; v∗, L∗)
D ← {} ▷ An empty dataset
while True do

π ← Learn(D)
v ← Learn(D)
G← {g}
for i← 0, 1, . . . , N do

p← pop(G)
t ∼ π(p)
Break if t is not admissible for p
if l(t(p)) = L∗ then ▷ use a ground truth value function.

v′ ← v∗(t(p))
else

v′ ← v(t(p))

D ← D ∪ {(p, t, v′)}
if v′ = 0 then ▷ If unprovable, stop the proof attempt.

Break
G← G ∪ t(p)
if G is empty then

return Success

When these tactics are applied to a proposition that does not have the required
form they output {False}.

The family of problems is easy to solve. Starting from the goal, only the
two tactics (Add 0/1) are admissible and must be applied n times. Next, the
Decompose tactic is used until propositions containing only one index i and a
value x are obtained. Finally, the Check tactic is the only admissible one when
x = bi. Thus, the only decisions to be made are between tactics Add 0 and Add
1 during the initial n steps.

An algorithm tailored to this family can easily determine the optimal sequence
of n tactics (Add 0 or Add 1) by leveraging the feedback from a single attempt,
as the binary word b is completely revealed by the possible applications of the
Check tactic at the end (does x = bi?).

14 B. Pinon et al.

Theorem 3. For any n = 2L, L ∈ N, there exists a problem in the family defined
by n and b ∈ {0, 1}n with associated T and g, such that Algorithm 3, given the
goal g, any N ∈ N, and L, takes at least 2n−1 steps in expectation to terminate.

Proof. There is a unique sequence of n tactics Add 0 and Add 1 that can generate
p (with l(p) = L) such that v∗(t(p)) ̸= 0. This sequence corresponds to the binary
word b and is necessary to complete the task.

Dataset D contains the only information about b to build π and v to guide
the search. If the optimal sequence determined by b is not applied, Algorithm 3
will terminate its attempt because v′ = v∗(t(p)) = 0. In D the only information
coming from b will be given by v′ = v∗(t(p)) for p a constructed proposition after
n application of tactics Add. The value of v′ is either 1 for the unique solution in
2n possibilities, or 0.

This scenario is equivalent to the black-box problem of finding a solution
among 2n possibilities, with no feedback other than “correct” or “incorrect” for
each attempt. As a result, the running time is at least 2n−1 for one of the problem
in the family at any n.

⊓⊔
Theorem 3 and its proof suggest that even when the decomposition of the

initial goal creates rich feedback that could lead to a solution, a Dynamic
Programming approach may still fail to efficiently assign credit to early decisions
due to merging feedback of independent sub-problems.

While we derived our result using a small set of specific tactics and propositions,
we believe our findings generalize to ATP since problems with similar structures
could be created in the general framework of theorem proving.

6 Conclusion

In this paper, we defined algorithms for problem-solving with learning-based
guidance in their search processes. Each algorithm implements an approach from
the literature: learning a value function with the Bellman equation, learning a
universal value function with Hindsight Experience Replay, and a divide-and-
conquer strategy for tactic-based Automated Theorem Proving.

We constructed counterexample problems that, by design, are easy to solve
but provably challenging for the respective algorithms. Our proofs demonstrate
that these algorithms struggle because they do not leverage rich feedback from
their failed attempts to improve their guidance.

One limitation of our theoretical analysis is its reliance on specific algorithmic
implementations. While our algorithms are straightforward implementations of
each approach, they may inadvertently introduce specific implementation choices
not part of the original approach and limit the scope of our findings. We have
sought to make these assumptions explicit in our presentation of each result.

Nonetheless, our work formalizes inefficiencies inherent to classical algorithmic
ideas found in the literature. Moreover, our methods offer a framework for
analyzing and guiding the development of new algorithms better leveraging
learning to accelerate search, leading to more effective problem-solving techniques.

Counterexamples to RL approaches blending search and learning 15

References

1. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,
McGrew, B., Tobin, J., Pieter Abbeel, O., Zaremba, W.: Hindsight experience
replay. Advances in neural information processing systems 30 (2017)

2. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
University Press (2009)

3. Aygün, E., Anand, A., Orseau, L., Glorot, X., Mcaleer, S.M., Firoiu, V., Zhang,
L.M., Precup, D., Mourad, S.: Proving theorems using incremental learning and
hindsight experience replay. In: International Conference on Machine Learning. pp.
1198–1210. PMLR (2022)

4. Knuth, D.E.: The art of computer programming, Volume 4, Fascicle 6: Satisfiability.
Addison-Wesley Professional (2015)

5. Lample, G., Lacroix, T., Lachaux, M.A., Rodriguez, A., Hayat, A., Lavril, T., Ebner,
G., Martinet, X.: Hypertree proof search for neural theorem proving. Advances in
Neural Information Processing Systems 35, 26337–26349 (2022)

6. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

7. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem
prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) Automated
Deduction - CADE-25. pp. 378–388. Springer International Publishing, Cham
(2015)

8. Pinon, B., Jungers, R., Delvenne, J.C.: Efficiency separation between rl methods:
Model-free, model-based and goal-conditioned. arXiv preprint arXiv:2309.16291
(2023)

9. Polu, S., Sutskever, I.: Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393 (2020)

10. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Pearson (2016)
11. Schaul, T., Horgan, D., Gregor, K., Silver, D.: Universal value function approxi-

mators. In: International conference on machine learning. pp. 1312–1320. PMLR
(2015)

12. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

13. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., et al.: A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science 362(6419),
1140–1144 (2018)

14. Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.: Model-based rl
in contextual decision processes: Pac bounds and exponential improvements over
model-free approaches. In: Conference on learning theory. pp. 2898–2933. PMLR
(2019)

15. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

16. Sutton, R.S., Modayil, J., Delp, M., Degris, T., Pilarski, P.M., White, A., Precup, D.:
Horde: A scalable real-time architecture for learning knowledge from unsupervised
sensorimotor interaction. In: The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2. pp. 761–768 (2011)

	Counterexamples to RL approaches blending search and learning for problem-solving

