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Abstract. With the ongoing energy transition, there is a push for the
electrification of various appliances and the use of Behind-the-Meter
(BtM) smart batteries. In combination with photovoltaic panels, the
carbon footprint and household expenses can be reduced by intelligently
managing the power flow around the battery. This can be formulated as
a sequential decision making process, where the energy consumption of
a residential household must be minimised by the Home Energy Man-
agement System (HEMS) by intelligently charging and discharging the
BtM battery. Recently, reinforcement learning has been proposed as an
alternative to classical approaches to model the HEMS. In this work, we
have conducted an extensive comparison between various optimisation
algorithms; predominantly from the reinforcement learning paradigm,
but also Mixed-Integer Linear Programming (MILP) with perfect fore-
sight and an expert system. In addition, we propose an extension to the
Deep Q-Network algorithm by incorporating shared state representation
learning over two ensembles, which we refer to as Multi Dynamics- and
Q-Learning (MDQL). We empirically demonstrate that MDQL outper-
forms all other approaches by a significant margin, with the exception
of MILP. An in-depth behaviour analysis shows that there are still gains
to be made by MDQL in terms of grid tariff exploitation.

Keywords: Battery dispatch optimisation · deep reinforcement learning
· home energy management systems · mixed-integer linear programming

1 Introduction

In order to limit the rise of the global temperature, electricity generation from
renewable power sources (e.g., solar, hydro and wind) will have to be scaled up
significantly. However, this increase poses as a major challenge for the power
grid, which is often already operating at its maximum capacity. Subsequently,
overloading the grid will occur more frequently if no further investments are
made into the infrastructure. By investing in smart Behind-the-Meter (BtM)
batteries, each building will be able to locally store its surplus of self-generated
power through photovoltaic (PV) panels, instead of netting it back into the
power grid. Consequently, the load on the grid will be decreased, and the building
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reduces its consumption costs and carbon footprint by maximising its utilisation
of PV-power.

In this work, we consider a residential household equipped with PV-panels,
BtM battery and a heatpump as its only appliance. Given this, a Home Energy
Management System (HEMS) (1) is able to control the power flow around the
BtM battery. At each timestep, the HEMS can select the operation of the battery;
charge, discharge or remain idle. This poses an optimisation problem, where we
want to intelligently manage the power flow such that the PV utilisation and
consumption costs are maximised and minimised, respectively. Moreover, we can
model this as a sequential decision making problem.

There is a gap in the current literature regarding extensively comparing ex-
pert systems and general optimisation approaches, such as reinforcement learn-
ing (RL). Moreover, the HEMS paradigm lacks a widely accepted problem setting
for benchmarking (2), resulting in the fact that work can not be compared di-
rectly with each other. Altogether, this research space lacks work that extensively
benchmarks algorithms for HEMS.

In addition, RL algorithms tend to be unstable in this problem setting, for
which we propose a novel extension to the Deep Q-Network (3) algorithm, which
resolves its instability and can function as the foundation for future work.

Following this, the main contributions of the paper are three-fold:

• Providing an extensive benchmark study, with the emphasis on algorithms
from the reinforcement learning (RL) paradigm. For context, Mixed-Integer
Linear Programming (MILP) with perfect foresight and a Heuristic-Based
System are also evaluated on this problem setting.

• Introducing a novel extension to the Deep Q-Network (3) algorithm, where
we utilise shared state representation learning in order to improve its perfor-
mance, stability and sample efficiency. We refer to this as Multi Dynamics-
and Q-Learning (MDQL).

• A novel take on the HEMS problem setting, in the form of an environment
that aims to accurately model a residential household located in The Hague.

By means of experimentation, we demonstrate that MDQL is able to outper-
form all other algorithms, with the exception of MILP with perfect foresight.
A behaviour analysis of MDQL shows that there are still gains to be made in
terms of grid tariff exploitation.

The remainder of the paper is structured as follows: Section 2 contains related
work; Section 3 discusses the required preliminaries; Section 4 describes the
problem setting; Section 5 contains all optimisation algorithms that are included
in this benchmark study; Section 6 and Section 7 contain the experimental setup
and results, respectively; and lastly, Section 8 discusses the main takeaways along
with future work suggestions.

2 Related Work

Home Energy Management Systems (HEMS) have become an increasingly rele-
vant research topic due to the energy transition. The main task is to efficiently
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manage the energy flow within a house/building, for instance through manag-
ing the charge and discharge cycles of a smart battery, Heating Ventilation and
Air Conditioning (HVAC) management, scheduling household devices and/or
predicting future power demands based on historical data.

For instance, (Mixed-Integer) Linear Programming (LP) (4; 5) solvers have
been proposed to optimise the scheduling of appliances with a set of defined con-
straints (e.g., an appliance must run within the next 12 hours, the smart battery
can not exceed a State of Charge of 13 kWh, etc.). However, these solvers scale
exponentially with the horizon, which makes the method computationally expen-
sive and quickly intractable. In addition, a (near-)perfect foresight or accurate
forecasts over the horizon is a prerequisite, which makes it less suitable for de-
ployment in the real world. Instead, LP can quantify an upper-bound on the
performance and function as a baseline for other optimisation approaches.

Other work proposes the use of evolutionary algorithms to optimise the
scheduling. For instance, Hu and Xiao (6) make use of genetic programming
to deal with demand response. A population of candidates can be altered by
repeatedly applying mutation, cross-over and selection to the population. With
every generation, the population converges closer to an optimum in the search
space. The selection after each generation is based on a hand-crafted fitness-rule
(i.e., objective function) that incorporates the user-comfort and costs. Similarly,
particle swarm optimisation has also been applied to this domain, for instance
by Lugo-Cordero et al. (7).

Lastly, machine learning techniques have also been proposed as HEMS. For
instance, deep neural networks, which are optimised by a genetic algorithm, have
been applied to managing the power-flow (8), appliance scheduling (9) or lighting
control (10; 11) in a residential house.

Moreover, reinforcement learning (12) has also been applied to energy man-
agement within a household. Various papers have been dedicated to HVAC-
management optimisation (13; 14), appliance scheduling (15) and power genera-
tion optimisation (16; 17). A survey by Vázquez-Canteli and Nagy (2) provides
an elaborate overview on the work that has been done in the HEMS-domain with
reinforcement learning. The authors make the observation that it is difficult to
compare the algorithms, due to the varying nature of the problem settings that
are being solved over the papers. There is no mainstream benchmark available
to evaluate a RL-agent against.

3 Background

A sequential decision making problem can be formalised into a Markov Decision
Process (MDP) (19) M .

=
{
S,A, T ,R, p(s0), γ

}
, where S defines the state space

(s ∈ S); A is the set of actions (a ∈ A); T is the transition function which
provides a mapping from state-action pairs to states, i.e.: T : S ×A 7→ p(S); R
is the reward function, mapping a transition to a numerical value: R : S×A×S 7→
R; p(s0) is the probability distribution of the initial state of an episode; and γ
is the discount factor.
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Given the MDP, the objective of the agent is to maximise its discounted
cumulative reward Gt:t+k, denoted in (1), from timestep t to t+k on-wards, and
doing so will result in solving the problem that the environment represents.

Gt:t+k
.
= rt + γrt+1 + γ2rt+2 + ...+ γkrt+k =

k∑
n=0

γnrt+n (1)

The main idea is that the RL algorithm will estimate Gt:t+k for a given state
or state-action pair. These estimators are referred to as value functions v and q,
respectively. The strategy of selecting the next action based upon the estimators
is referred to as the policy π of the agent. The value functions are defined in (2).

vπ(s)
.
= Eπ, T

[
G | s

]
= Ea∼π(· | s), s′∼T (· | s, a)

[
R(s, a, s′) + γvπ(s

′)
]

qπ(s, a)
.
= Eπ, T

[
G | s, a] = Es′∼T (s,a)

[
R(s, a, s′) + γEa′∼π(· | s′)

[
qπ(s

′, a′)
]](2)

Given this, the objective of the algorithm is to obtain the optimal policy π∗,
which makes use of the q- and/or v-value functions.

4 Problem Setting

With the preliminaries discussed, we can now define the outline of the envi-
ronment with which we model the battery dispatch optimisation setting. We
consider a residential household equipped with a smart BtM battery, PV panels,
access to the power grid, and a heatpump as its sole appliance. The objective is
to provide cheap and green power to the heatpump by intelligently managing the
battery power flow. Moreover, the environment models Shell’s EcoGenie house
which is located in The Hague, and makes use of historical data for the weather
(forecasts) and grid tariff features. We now discuss the problem setting in its
MDP-form, covering the state space, action space and reward function.

4.1 State Space

The state space S consists out of features describing the time, weather (fore-
casts), grid tariff, battery state of charge (SoC), and heatpump status. The
environment is partially based on historical data, namely the weather and pric-
ing features are sampled from a dataset. Specifically, day-ahead market prices
have been obtained from ANWB Energy3, weather features and forecasts have
been sampled from the National Solar Radiation Database (NSRDB)4 and the
ERA5-Land dataset (18), respectively. For these features, we have a single trace
3 The day-ahead market prices can be found here:
https://energie.anwb.nl/actuele-tarieven.

4 The data viewer of NSRDB can be accessed here:
https://nsrdb.nrel.gov/data-viewer.



Deep Reinforcement Learning for Battery Dispatch Optimisation 5

available, meaning that each entry in the dataset is always followed by the same
subsequent entry. This implies that we are not dealing with a traditional online
environment, as it includes an offline component in the form of these features.
Consequently, epistemic uncertainty might play a significant role in this set-
ting because the algorithm cannot continuously sample new transitions from the
environment. Some other features will be updated every time-step.

Table 1. State Space S of the EcoGenie environment. The ‘†’ denotes features that
are sampled or inferred from a historical dataset. For the outdoor temperature and PV
production, we plug in the values of the previous timestep, since those of the current
cannot be known by the HEMS.

Feature Symbol Unit Description
Battery State of Charge SoC % Amount of charge in the smart battery.
Battery State of Health SoH % Estimation of the health, based on dis-

charge cycles.
Indoor temperature Tin °C Temperature of residential house.
Outdoor temperature† Tout °C Temperature outside the residential house.
Forecasted outdoor temperature† T for

out,t °C Mean forecasted outdoor temperature over
the next 24 hours.

Heatpump input power Hpin kWh Number of kWh inserted into the heat-
pump.

Heatpump output power Hpout kWh Heat produced by the heatpump.
PV production† PVt−1 kWh Available power generated by the solar

panels.
Forecasted PV radiation† PV for

t kW Forecasted cumulative PV radiation over
the next 24 hours.

Grid tariff† Pt Eur/kWh Tariff of drawing/netting 1 kWh from/to
the power grid.

MA grid tariff† DMA Eur/kWh Moving average (MA) of grid tariff over the
current episode.

Mean grid tariff day-ahead† PA Eur/kWh Mean grid tariff for day-ahead market.
Min. grid tariff day-ahead† Pmin Eur/kWh Minimum grid tariff for day-ahead market.
Max. grid tariff day-ahead† Pmax Eur/kWh Maximum grid tariff for day-ahead market.
Netting - - Boolean indicating whether we can net for

the full tariff.
Workday - - Boolean indicating whether it is currently

a workday.
Hour - - Denoting hour of the day.

4.2 Action Space

The action space A has been discretised. It consists out of five actions, where
each action corresponds to an operation of the smart battery. Below are the five
possible actions denoted that a ∈ A can take:
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• IDLE: Do not charge nor discharge the battery.
• CHARGE_GRID: Charge the battery from the power grid.
• CHARGE_PV: Charge the battery with the PV-panels.
• DISCHARGE: Deploy battery-power to the heatpump.
• NETTING: Sell battery-energy to the power supplier.

By limiting A to these five discrete actions, the sample efficiency of the agent will
be improved at the cost of not being able to fully control the (dis)charge rates
of the battery. However, based upon domain knowledge we argue that operating
below the maximum possible rate is only beneficial under very specific and rare
circumstances.

Note that concurrently charging and discharging (i.e., float charging) is not
available, since it severly deteriorates the battery’s state of health (SoH) (22).
In case DISCHARGE is not selected, the heatpump power requirements will be
met by drawing power from the grid. This is to ensure that the user comfort
level is maintained at all times. Important to note is that the heatpump can
only receive power from one source at a time, which means that if the action
DISCHARGE is selected despite the battery having insufficient power to fullfill the
requested power, the power will instead be entirely drawn from the grid and the
effect of the DISCHARGE action will be nullified.

4.3 Reward Function

The reward function R consists out of two compnents: (i) the costs c made
over the previous timestep; and, (ii) the deterioration of the battery SoH as a
result of performing the selected action. This deterioration is approximated by
considering the total number of discharge cycles it has endured and the rated
number of discharge cycles set by the manufacturer5. The reward function is
denoted in (3), where λSoH is an importance scalar for the SoH, κ the cost per
percent of SoH, and λw,t a scalar for the overall reward. The cost per percent of
SoH is computed by dividing the rated number of discharge cycles with the cost
of purchase.

rt
.
= λw,t

(
− ct − κ · λSoH · SoH∆

)
SoH∆

.
= SoHt−1 − SoHt

(3)

The scalar λw,t is added to the reward function to penalise the agent when an
action was selected that did not change the battery SoC, thus wasting an action.
Its value at a given timestep t is determined based on (4).

λw,t =

{
m, if at ∈ A \ {IDLE} and SoC∆ = 0

1, otherwise
(4)

5 As the battery model, we used the sonnenBatterie10
as a reference. Its specifications can be found here:
https://sonnenbatterie.co.uk/products/sonnenbatterie-10/.
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5 Methods

We now turn our attention to the optimisation algorithms that are part of the
benchmark study. First, we discuss an expert system in the form of a set of
heuristics. Next, the Mixed-Integer Linear Programming (MILP) solver is briefly
discussed, and lastly, we summarise the reinforcement learning approaches. The
expert system and MILP-solver serve as baselines and provide context to how
well the reinforcement learning approaches perform. In addition, a lower-bound
on the performance is also quantified in the form of the ‘Idle’-baseline. This
baseline demonstrates what the performance in the environment would have
been, given that there are no smart BtM battery nor PV-panels present.

5.1 Heuristic-Based System

The Heuristic-Based System (HBS) is modelled as a chain of six handcrafted
if-statements. These if-statements contain thresholds regarding PV-production,
battery SoC and/or grid tariff. Moreover, the thresholds are modelled as param-
eters which have been optimised through Bayesian optimisation.

The HBS first considers charging the battery with PV-power, after which
it considers discharging its power into the heatpump, such that the power con-
sumption of the household will be minimised. If the current environment state is
not beneficial for charging from PV nor discharging to the heatpump, only then
does the HBS consider charging/discharging the battery from/to the power grid
in case it is beneficial given the current tariff. If this is also not the case, then
the IDLE-action is selected.

5.2 Mixed-Integer Linear Programming

Next, we developed a Mixed-Integer Linear Programming (MILP) solver that is
able to determine the optimal sequence of actions over a horizon, which results
in the lowest power consumption costs. The solver receives the perfect informa-
tion of the next h timesteps, which contains the battery SoC, PV-production,
grid tariff and heatpump power requirements. Providing perfect foresight is not
feasible in practice, and this baseline is instead aimed at quantifying an upper-
bound on the performance that can be achieved in this setting. In order to let
the program take the near future into consideration during the decision making
process, we introduce the execution horizon e. With this, the program still solves
the first h timesteps, but only the first e actions are executed in the environment.
Thus, the first h − e states of the next horizon will be equal to the last h − e
states of the previous horizon.

Due to the nature of MILP, where the decision variables scale exponentially
with the horizon h, it is infeasible to solve horizons of multiple weeks or months
at once. Subsequently, MILP quantifies an upper bound that is tractable given
the time and compute power constraints. In the end, h and e are set to 12 and
6, respectively.
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5.3 Reinforcement Learning

Lastly, we have benchmarked a set of model-free reinforcement learning (RL)
algorithms from differing domains. Below, we give an overview of the collection
of algorithms selected for the benchmark, along with our novel extension called
Multi Dynamics- and Q-Learning (MDQL). Deep Q-Network (DQN) (3):
Online off-policy RL approach that approximates the q-values with a function
approximator Q. This algorithm has been included since it is one of the building
blocks of MDQL. It computes the TD-error δ according to (5), in which a target
network is used to compute the target q-values. Here, Q is parameterised by the
weights θ or θ′ for the online and target network, respectively.

δ
.
= r + γmax

a′
Qθ′(s′, a′)−Qθ(s, a) (5)

Batch Constrained Q-learning (BCQ) (29; 28): Offline off-policy RL algo-
rithm that restricts the policy to the action distribution Gω present in the offline
dataset. The discrete version of BCQ largely follows DQN, with the main differ-
ence being the action selection strategy, where DQN selects the action greedily.
In contrast, BCQ considers the probability of the behaviour policy derived from
the offline dataset, see (6). The probability of a′ is scaled by the action â that has
the highest probability for s′. Given this, only the subset of actions that exceed
threshold ΦBCQ are considered when taking the (arg)max. Note that setting τ
to 0 or 1 results in Q-learning or behaviour cloning, respectively.

a′ |Gω(a
′ | s′)

maxâ Gω(â | s′)
> ΦBCQ (6)

However, since we are dealing with a semi-offline environment (i.e., only a sub-
set of the features are sampled from the offline dataset), the agent still has to
collect its transitions. Subsequently, we have made some minor adjustments to
the algorithm; we added a replay buffer and ϵ-greedy as exploration strategy.
With this, the agent creates its own dataset in order to compute Gω. Proximal
Policy Optimisation (PPO) (30): On-policy gradient approach that limits
the size of the policy update by clipping the difference between the current and
old policy. Consequently, the training becomes more stable and it prevents the
policy from falling off the cliff. Its clipped objective function LCLIP is denoted
in (7), where Â is the advantage. Its final objective function also consists out of
a value loss and entropy component to ensure sufficient exploration.

LCLIP(θ)
.
= Ê

[
min

(πθ(a|s)
πθold

Â, clip
(πθ(a|s)

πθold

, 1− ϵ, 1 + ϵ
)
Â
)]

(7)

In addition, we have also included its recurrent variant; rPPO. Here, the for-
ward layers have been replaced by LSTM (26) layers. Multi Dynamics- and
Q-Learning (MDQL). Online off-policy algorithm that makes use of shared
state representation learning between a set of ensembles to make the learning
more robust. It is an extension to DQN, and learns the transition and reward
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dynamics next to the state-action values. The predictions that MDQL can make
are summarised in (8), where F is the shared feature extractor, Q, D̂ and R̂ the
ensembles that learn the q-value, transition and reward dynamics, respectively.
Variable i is a member of the ensemble, and s∆ the state difference such that
s′ = s+ s∆.

Qθ,i

(
Fθ(s)

)
7→ qi

D̂θ,i

(
Fθ(s), a

)
7→ s∆,i

R̂θ

(
Fθ(s), a

)
7→ r̂

(8)

At decision making time, the action is selected based on the aggregation of the
Q-members. As aggregation strategy, we take the Confidence Lower Bound (25)
over the estimations. Consequently, we penalise actions with high disagreement
between the Q-heads, which should be higher in state-action regions with sparse
datapoints. Thus, we penalise actions that have high epistemic uncertainty. We
also introduce its recurrent counterpart, rMDQL, where the forward layers in F
are replaced by LSTM layers.

6 Experimental Setup

In this section, we cover the main details and configurations regarding the experi-
mental setup. All experiments have been conducted on a shared compute cluster,
from which we requested a compute unit with the following specifications:

• CPU: 1 Intel Xeon Gold 6248 core @ 2.50 GHz
• GPU: 1 NVIDIA Tesla V100 (32GB HBM2 VRAM)

Additionally, we report on the mean and standard deviation over three replica-
tions. Learn curves are smoothed with the Savitzky-Golay filter, with its imple-
mentation taken from SciPy (24). The window length is set to 21 and the order
of the polynomial fitted to the samples is set to 4.

6.1 Environment Configuration

Since we are dealing with a non-traditional RL environment (see Section 4) due
to the presence of three years of historical data, we have opted to split the
data into a train, validation and test set, with a split of 26:5:5. The training
set contains the first 26 months, while the remaining months are divided over
the validation and test set by alternating between the sets when assigning the
next month. The reasoning behind this assignment strategy is to ensure that the
validation and test sets contain roughly the same number of spring, summer, fall
and winter months. See below for an overview of the three sets:

• Train set: 2017, 2018, {January, February} of 2019.
• Validation set: {April, June, August, October, December} of 2019.
• Test set: {March, May, July, September, November} of 2019.
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Furthermore, a training episode takes 1,420 hours (i.e., ∼2 months), irrespective
of the action taken by an optimisation scheme. The RL methods are trained
for 100 epochs, where each epoch consists of 20 training episodes. Subsequently,
each model is trained on 2.8M timesteps. During evaluation, all five months
are included in an evaluation round, where an episode takes exactly one month.
Subsequently, each evaluation round consists of five episodes. The attributes that
are not based on historical data are randomised at the start of an episode.

Lastly, the reward function is configured such that the battery SoH-penalty
is only applied to the NETTING action, with its scalar λSoH set to 1. The penalty
multiplier m is set to 1.05.

6.2 Hyperparameter Configuration

The hyperparameter configuration of each RL algorithm largely follows the de-
fault configuration set by the used implementation. For DQN and (r)PPO, we
used the Stable-Baselines3 (Contrib) library (23), and for BCQ we used the au-
thor’s implementation which can be found at https://github.com/sfujim/BCQ.
As for MDQL, the majority of the hyperparameter settings have been copied
from DQN. The remaining settings, such as the ensemble size and learning rate,
have been optimised specifically for MDQL.

A subset of the hyperparameters have been optimised through grid search.
The resulting best found values have been summarised in Table 2.

Table 2. The values for each hyperparameter that has been optimised. In case a
hyperparameter is not applicable to an algorithm (i.e., GAE for DQN), we insert ‘×’.
Note that there are no layers in the Q-ensemble for (r)MDQL, resulting in a linear
mapping from the feature extractor to the estimated q-values.

Hyperparameter DQN BCQ (r)PPO (r)MDQL
Network arch. [256, 256] [64, 64, 64] [256, 256] F : [1024, 1024]

Q: —
D̂: [256, 256]
R̂: [128, 128]

Learning rate 0.001 0.00001 0.0001 0.0001
Initial ϵ 1.00 1.00 × 0.90
Final ϵ 0.05 0.05 × 0.40
ΦBCQ × 0.10 × ×
GAE × × 0.95 ×
Entropy coef. × × 0.01 ×
Ensemble size × × × 4
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7 Experimental Results

By means of experimentation, we study how all optimisation approaches compare
against each other, and discuss an analysis on the decision making process of
MDQL.

7.1 Benchmarks

In this experiment, we evaluate all algorithms against each other. First, we show
the smoothed learning curves on the validation environment in Figure 1. It shows
how MDQL, and to a lesser extent rMDQL, outperform all benchmarks, with
the exception of MILP. MDQL has an asymptotic learn curve, while rMDQL
slightly drops off after its initial peak at 500k timesteps. Noteworthy is the
curve of DQN, which initially shows a similar trend as MDQL. However, it then
drops off significantly to the level of the ‘Idle’-benchmark. This is the result
of diverging q-values due to bootstrapping. It is caused by the fact that the
environment returns a negative reward for almost all actions.

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps 1e6
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Fig. 1. Smoothed learn curves on the validation environment. Algorithms without a
learn curve are denoted with the dashed lines. Note that the parameters of the HBS are
optimised on both the training and validation environment. As the figure shows, MDQL
performs the best out of all benchmarks, barring MILP with perfect foresight (which
serves to quantify an upper bound). Somewhat surprisingly, adding recurrent layers to
the feature extractor results in a measurable deterioration of the overall performance.

Moreover, the difference between DQN and BCQ is noteworthy. It shows that
the offline aspect of the environment plays a minimal role in obtaining a high
cumulative reward. Instead, constraining the updates to the data distribution
resulted in a conservative policy, since BCQ only barely outperforms the lower
bound.
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Table 3. Metrics of each method on the test environment. For each metric, we report
on the mean and (if applicable) standard deviation, which are top and bottom per
metric, respectively. In addition, we highlight the overall best metrics in bold, while
we also underline the best metrics excluding MILP. Lastly, for netting, we only consider
the replications that have netted some power.

Metric Idle MILP HBS DQN BCQ PPO rPPO MDQL rMDQL
PV util. (%) 0.00 64.00 52.63 72.32 50.27 74.73 75.69 76.54 74.01

4.40 13.96 1.74 9.44 12.45 2.67 0.03
Montly costs 89.07 79.87 83.13 82.35 86.49 82.99 82.72 80.78 81.92

0.29 0.52 0.09 0.53 1.17 0.30 0.57
Cum. reward -445.34 -400.69 -417.89 -414.35 -436.94 -418.24 -421.55 -405.76 -413.84

1.29 1.98 0.61 1.69 7.93 1.06 3.64
Consumption

No. MWh 8.73 8.38 8.45 8.37 8.48 8.35 8.35 8.35 8.36
0.02 0.07 0.01 0.04 0.05 0.01 0.01

Costs 445.34 399.59 415.65 411.77 433.51 414.96 413.62 403.97 409.75
0.01 2.56 0.31 2.66 5.84 1.48 2.91

Mean tariff 0.051 0.048 0.049 0.049 0.051 0.050 0.050 0.048 0.049
0.000 0.000 0.000 0.000 0.001 0.000 0.000

Netting
No. kWh 0.00 3.96 0.00 0.91 16.66 0.42 0.00 0.86 3.01

0.00 1.28 6.13 0.59 0.00 0.67 1.40
Profits 0.00 0.24 0.00 0.04 1.06 0.02 0.00 0.05 0.16

0.00 0.05 0.39 0.03 0.00 0.04 0.08
Mean tariff — 0.061 — 0.050 0.064 0.042 — 0.057 0.053

— 0.001 — 0.000 0.002

Lastly, PPO shows a stable learning curve and obtains a performance sim-
ilar to HBS. Notably, PPO seems to not have settled yet, and more training
time might result in approaching or exceeding MDQL. Its recurrent counterpart
proves to be rather unstable, with the widest error out of all algorithms. This,
along with the performance of rMDQL, demonstrates that recurrent layers seem
to be more sensitive in terms of hyperparameter settings. Moreover, the benefit
also seems to be underwhelming, which can be attributed to the fact that S
already provides weather forecasts for the near future.

Next, we take the best weights of each algorithm and evaluate them on the
test environment, from which we denote a set of metrics in Table 3. Noteworthy is
that no method makes extensive use of the NETTING action. The action is selected
in rare occassions, mainly when the grid tariff is relatively high. It demonstrates
that only with high tariffs it is possible to overcome the battery SoH-penalty.
This behaviour indicates that it is not cost-effective to use the battery, since the
operating costs outweigh the return. To solve this, cheaper and/or more durable
batteries as well as higher grid tariffs seem to be necessary to reach and surpass
the crossover point in order to make NETTING worthwhile.

The available power is instead consumed by the heatpump. Compared to
the ‘Idle’-baseline, all other methods consume less power from the grid, which
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can accumulate up to 0.5 MWh’s over the five test months. MDQL and PPO
consume the least amount of MWh, closely followed by MILP despite it obtaining
the highest cumulative reward. Overall, the methods are able to save up to nine
euros each month.

Interestingly, all methods have a PV-utilisation below 80%. This can be ex-
plained by the fact that the battery is only able to perform one action at a time,
so achieving a PV-utilisation of 100% and having a high cumulative reward is
extremely difficult, if not impossible. It would mean that in order to achieve
this, the battery must charge continuously during daytime, and is only able to
discharge during nighttime. This in itself is not cost-effective, since the general
trend of grid tariffs have shown to be higher during daytime than nighttime. So
instead, it is optimal to sometimes waste PV-power. For instance, MILP has one
of the lowest PV-utilisations (64%) and a higher grid consumption than MDQL,
and makes up for this by exploiting the grid tariffs to a greater extent.

7.2 MDQL Decision Making Analysis

In order to analyse the behaviour and reasoning of the agent, we have plotted
one week from the test environment in Figure 2. During this week, the agent
mainly charges the battery via the PV panels. As the figure shows, the majority
of the available PV power has been covered by the agent. Then, this power is
consumed by the heatpump in the hours where there is little to no PV radiation.
In addition, the agent sometimes opts for a quick charge from the grid at mid-
night, possibly since the grid tariffs are often relatively low during that point in
time. Unfortunately, these drops in tariff are not fully exploited. For instance,
the agent does not opt to charge the battery during the low tariff at the end
of the 6th of July, despite the battery being nearly depleted. Another example
would be at the start of the 2nd of July, where the drop should have been used
to charge the battery.

8 Discussion

In this work, we have benchmarked a set of optimisation algorithms on the bat-
tery dispatch setting, with a focus on reinforcement learning (RL) approaches.
In addition, we propose Multi Dynamics- and Q-Learning (MDQL), which is a
novel extension to the Deep Q-Network algorithm by sharing state representa-
tions between q-, dynamics- and reward-approximators for weight regularisation.

Based upon the experiments, we demonstrate that the RL approaches fall
short of Mixed-Integer Linear Programming (MILP) with perfect foresight, which
quantifies an upper bound on the performance6. Among the RL algorithms,
MDQL obtains and settles to the highest cumulative reward. Noteworthy is how
recurrency introduces instability and/or an overall worse performance. This in-
stability is also present in DQN, where it falls off the cliff at 500k timesteps,
6 Note: this is not the absolute upper bound, due to a set of constraints (time budget,

limiting the horizon) that have been imposed on MILP.
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Fig. 2. MDQL decision making over one week in July. It consists out of four plots,
from top to bottom: the reward signal, PV radiation in kWh, grid tariff in €/kWh and
progression of the battery SoC in percentages. Moreover, the background color denotes
the action that has been selected at that point in time. As the figure shows, the agent
tries to maximise its PV-utilisation, and deploy this power during nighttime.

after which it settles to the performance of the ‘Idle’-baseline. Overall, PPO,
MDQL and rMDQL obtain asymptotic learn curves, and are able to match or
exceed the expert system.

A decision making analysis of MDQL shows that the strategy consists of
maximising the PV utilisation, and deploying it to the household outside sun-
hours. In addition, the battery is often charged from the grid at midnight since
the power is relatively cheap at that point in time. However, the analysis also
shows that there are still gains to be made by exploiting the spikes more effec-
tively, as is demonstrated by MILP. In the current problem setting, this can be
at least 1 euro every month, but with higher grid tariffs the potential savings
will become more significant.

Moreover, the lack of NETTING shows how the battery SoH penalty is too
severe to overcome. It indicates that the current setup is not cost-effective in
order to use the NETTING action. Cheaper batteries and/or higher grid tariffs
might be required in order to overcome the cost of purchase.

One of the main future work suggestions is regarding the MILP baseline.
Currently, MILP has access to the perfect information, resulting in an unfair
comparison against the other approaches. In addition, a set of constraints have
been imposed on MILP due to its computational properties. This does raise the
question as to how its performance would be with less restrictive constraints and
making its decisions based on forecasts or historical data.
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Other possible future work directions could lie in improving MDQL by util-
ising the learned transition- and reward-dynamics for decision-time planning.
Subsequently, MDQL will become model-based, and we believe that planning
at testing time should result in performance improvements. Another important
aspect to investigate is the computational costs of the algorithms from the dif-
fering domains in case of real-world deployment. In general, RL poses to be a
promising approach to battery dispatch optimisation, due to its low deployment
costs compared to MILP and overall performance.

Lastly, more accurate/realistic battery dynamics and state of health approx-
imations might result in a more nuanced perspective of discharging to the power
grid (i.e., NETTING) or to the household, as it has been shown that it is not cost
effective in the problem setting to take the battery lifespan into consideration
due to its cost of purchase.
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