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1 α-β Bounds for Monte-Carlo Tree Search
We propose an enhancement that addresses a shortcoming of Monte-Carlo Tree
Search (MCTS) [1], which traditionally considers each node as a standalone
multi-armed bandit (MAB). This isolated approach neglects results from other
parts of the search tree, potentially limiting the effective use of accumulated data.
Inspired by minimax, this approach integrates ancestral bounds (α and β) into
UCT [2], allowing them to intersect and be dynamically adjusted. By incorporat-
ing path-dependent information and refining predictions based on evaluations,
our approach enhances decision making and improves selection accuracy, thus
moving beyond viewing tree nodes as independent MAB challenges.

α = max (α, V (s, a)− CB(s, a))

β = min (β, V (s, a) + CB(s, a))

Before selection, α and β are dynamically adjusted using the value function
V (s, a) and confidence bounds CB(s, a) (as in UCT). Whenever these bounds
are updated, the corresponding lower bound α− and the upper bound β+ are
stored for use in subsequent decisions. This leads to a constant revision of the
best current upper and lower bounded values for the maximizing player along
the chosen path.

Our goal is to enhance UCT in MCTS by using the α and β bounds to bet-
ter balance exploration and exploitation. These bounds guide UCT in deciding
whether to focus on known promising paths or explore new, potentially better
options. When α < β, the algorithm prioritizes exploitation of promising paths,
whereas when α > β, it indicates deviation towards exploring alternative options
with potential better results. To achieve this, the UCT formula is modified by
incorporating the following:

δαβ = 1− (β − α) · (1− (β+ − α−)), (1)

∆αβ = C2
αβ · ln(δαβ ·N(s)), (2)
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(3)
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In Formula 2, the parameter Cαβ is introduced to modify the impact of ∆αβ on
the exploration process, in our experiments not deviating from C by more than
0.2. δαβ (Formula 1) measures the disparity between β and α, reflecting the un-
certainty in their limits. As this uncertainty increases, or as β and α converge,
δαβ decreases, which can even become negative if β < α, emulating minimax
pruning. The adjustment of the exploration term using ∆αβ is further controlled
by N(s), assuring a stronger impact on well-explored nodes and requiring sub-
stantial evidence before altering the exploration strategy. When ∆αβ = 0, or
when β or α are undefined, the standard UCT selection formula is used. Other-
wise, the modified Formula 3 is applied.

2 Experiments
Our experiments tested MCTSαβ on four board games selected for their dis-
tinct challenges. The experimental configuration incorporated improvements to
achieve a higher level of play, such as early playouts [4], and informed playouts.
Table 2 presents our approach combined with Implicit Minimax [3].

The experimental results indicate that MCTSαβ significantly improves win
rates in Breakthrough and Mini Shogi, where endgame strategies are critical,
demonstrating its effectiveness in scenarios with limited paths to victory. In
Amazons, the high branching factor likely limits search depth, reducing the im-
pact of α and β initialization. For Gomoku, the benefits of MCTSαβ are notable
only when combined with implicit minimax, suggesting that this combination is
essential for navigating complex strategic options. With sufficient computational
resources, Gomoku’s performance improves significantly, and similar gains might
be achievable in Amazons with further resource allocation.

The efficiency of MCTSαβ is dependent on the strategic depth of the game
and the magnitude of the search space. Games such as Breakthrough and Min-
ishogi, which demand tactical play, gain considerable advantages from α − β
bounds. In contrast, Amazons and Gomoku, with many similar strategies, see
fewer benefits. Future work will explore improving performance in these areas
and investigate the theoretical convergence of the approach.

Game Simulation MCTSαβ,imm vs. MCTSαβ vs.
budget MCTSimm MCTS

Win Rate ± 95% c.i. Mean ± 95% c.i.

Amazons (8× 8) 75,000 50.99 ± 2.88 52.08 ± 2.80
225,000 50.71 ± 2.83 53.34 ± 2.88

Gomoku 75,000 52.69 ± 2.75 50.88 ± 2.77
225,000 53.57 ± 2.79 51.16 ± 2.77

Breakthrough 75,000 53.35 ± 3.07 52.44 ± 3.03
225,000 54.30 ± 3.02 55.37 ± 3.07

Mini Shogi 25,000 57.16 ± 3.05 54.61 ± 2.99
75,000 59.94 ± 3.15 58.24 ± 2.97
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