
An Efficient Decremental Algorithm for Simple
Temporal Networks

Yehor Kozyr1[0009−0001−4445−7833], Wéam Aridi2[0000−0001−6418−6332], and
Neil Yorke-Smith1[0000−0002−1814−3515]

1 Delft University of Technology, The Netherlands
2 University of Cambridge, United Kingdom

n.yorke-smith@tudelft.nl

Abstract. Algorithms for solving simple temporal networks (STN) are
expensive in large-scale environments. This matters in use cases such
as practical AI planning systems. When a small number of constraints
are updated, we wish to recompute incrementally. Prior art considers
incremental computation when constraints are added or tightened. This
paper presents the first algorithm for incremental computation when
constraints are removed or loosened. The presented DPPC algorithm is
based on the refined concept of a support graph. Experimental results
on a benchmark library of STN instances find that DPPC outperforms a
state-of-the-art non-incremental algorithm in over 95% of cases.

Keywords: temporal reasoning · simple temporal network · support
graph · incremental algorithms

1 Introduction

Planning and scheduling is a long-standing area of AI [6]. The core scheduling
problem at the centre of notable deployed AI systems is known as the Simple
Temporal Network (STN) [1]. The STN is a graph representation with linear
constraints. There is a long line of work on the STN and variants [4, 7]. The main
inference task over STNs is checking or enforcing consistency of the constraints.

A state-of-the-art algorithm for consistency of STNs is P3C [9]. P3C can be
thought of a specific implementation of partial path consistency for the con-
straint class embodied by STNs. P3C is a monolithic algorithm. By contrast,
in practical uses of STNs – such as in planning when the underlying STN is
frequently updated – we wish to recompute consistently incrementally, rather
than monolithically as with P3C [3, 5, 11, 2, 10].

An incremental algorithm for STN constraint addition or tightening was
developed by ten Thije [12]. It is based on the concept of a STN’s support graph.
The algorithm takes advantage of P3C but applies it to a judicious subset of
the graph. The authors demonstrate that such an approach is advantageous in
case of incremental updates – updates that restrict already existing restrictions.
Another incremental algorithm is by Micheli [8]; it also uses an auxiliary graph
structure, the δ-STN.

2 Kozyr, Aridi and Yorke-Smith

For decremental updates – such as updates that loosen existing restrictions –
the idea of a support graph algorithm was proposed also by ten Thije [12] but not
tested experimentally. The research gap is the question whether ten Thije [12]’s
theoretical algorithm represents an effective decremental approach. This paper
address exactly this question. The work we present stems from the bachelor’s
thesis of the first author.

In this work, we make two contributions to the literature. First we present
improvements to the theoretical DPPC algorithm of ten Thije [12], sharply re-
ducing the number of calls in updating the support graph. Second, we undertake
the first empirical evaluation of decremental solving of STNs, in particular com-
paring the improved DPPC to P3C. We benchmark on structured STNs arising
from hierarchical task network planning, and on random scale-free graphs. Re-
sults show the dominance of DPPC with a lower run-time in 96.5% of cases and
a lower average run-time.

The remainder of the paper is structured as follows. In Section 2 we intro-
duce the STN and the idea of a support graph, as well as the algorithm and
pseudocode for DPPC. In Section 3 we explain the methodology behind the
implementation and evaluation of DPPC, as well as our improvements to the al-
gorithm. In Section 4 we present results obtained during experiments comparing
DPPC and P3C algorithms. Section 5 concludes the paper.

2 Background and Related Work

2.1 Simple temporal network

A simple temporal network consists of a set X = {x1, x2, . . . , xn} representing a
set of n events and a set C of m constraints [4]. Each constraint ci→j ∈ C has a
weight wi→j , which represents an upper bound on the time passed between events
xi and xj , and can be rewritten in the form xj − xi ≤ wi→j . Additionally, it is
easy to show that cj→i contains information about the lower bound on the time
difference between xi and xj : as xi−xj ≤ wj→i, it follows that xj−xi ≥ −wj→i.
Given that we can convert weights to lower and upper bounds of STNs, we can
model STNs as graphs, where in case of ci→j there is a directed edge from xi to
xj with a weight wi→j . For a full introduction to STNs and their extensions, we
refer to Dechter et al. [4] and subsequent literature.

The main inference task over a STN is to determine whether the set of con-
straints is a priori consistent. Further, the constraints of a STN can be tightened
to a so-called minimal network [4], if the graph is not already minimal (Figure 1).
We will refer to this process of checking consistency and (if consistent) obtaining
the minimal network, as ‘solving’ a STN. P3C is an example of such a solving
algorithm [9]. Further, we denote as E a set of edges of the original graph over
vertices X with weights wi→j , and as Emin a set of edges of the minimal graph
with (minimal) weights ωi→j .

An Efficient Decremental Algorithm for Simple Temporal Networks 3

Fig. 1: Example of a STN and how constraints can affect other constraints in the
tightened version of the STN. Reproduced from ten Thije [12].

2.2 Support graph

Incremental solving of STNs is based on the idea of a support graph [12]. This is
a data structure computed and maintained separately from computing the edges
Emin of the STN’s minimal graph. The reason for a separate data structure
is that it allows us to determine the support for every minimal weight that is
computed.

The intuition is that every minimal weight is formed by either 1) the sum of
other minimal weights of the graph or 2) a single edge that connects two nodes,
and is the shortest path from one node to another. This allows us to reduce the
set of edges that need to be recalculated. This is useful when a new constraint
is added to the STN, or an existing constraint is narrowed such as by events
occurring in a planning system: for instance from [10, 30] to [10, 20].

The support graph can be thought of as a structure representing how different
edges affect the minimum weight to get from one vertex to another. Each edge
in the support graph going from vertex a to b shows some effect of vertex a onto
b. Figure 2 depicts a STN, its tightened minimal network, and the corresponding
support graph.

In more detail, the support graph contains vertices of three types, each with
a different semantic:

1. A vertex of type oa→b represents the weight of the edge that connects vertices
a and b in the original graph.

2. A vertex of type µa→b represents the minimum weight of the path connecting
vertices a and b in the original graph. A direct edge in a support graph from
oa→b to µa→b represents that the edge between a and b in the original graph
is a path with minimum total weight from a to b.

3. In order to describe paths with more than one edge in them, the support
graph has a third type of vertices of type △abc. These vertices cannot exist
without incoming or outgoing edges: if there is a △abc, it is guaranteed that
there exists an edge from µa→b to △abc, an edge from µb→c to △abc, and
an edge from △abc to µa→c. Such a combination of vertices represents the
fact that ωa→c = ωa→b + ωb→c. In such a scenario, we say that minimum
weights of paths from a to b and from b to c support the minimum weight

4 Kozyr, Aridi and Yorke-Smith

Fig. 2: Example of a STN (a), its tightened representation (b), and support graph
(c) based on the tightened weights. Reproduced from ten Thije [12].

Algorithm 1 Construct-Support-Graph
Input: (1) A PPC STN S = ⟨V,E,Emin⟩ where each constraint ci→j ∈ C is annotated by its

original weight wi→j (in E) and its minimum weight ωi→j (in Emin). (2) A simplicial elimination
ordering d.

Output: The weight support graph D for S.
1: V ′, E′ ← ∅
2: for all (u, v) ∈ E do
3: add ou→v to V ′

4: for all (u, v) ∈ Emin do
5: add µu→v to V ′

6: mark µu→v

7: D ← (V ′, E′)
8: call Update-Support-Graph(S, d, D)
9: return D

of a path from a to c, and such path can be represented as two connected
paths – a → b and b → c.

2.3 DPPC algorithm

Decremental reasoning concerns updates to the STN that loosen or delete one
or more constraints. For example, from [10, 30] to [5, 35]. The key observation
underlying the original DPPC algorithm is that, if a constraint is loosened, some
of such edges may no longer provide support to a minimal weight, as some other
combination might be the shortest path now. Note that, in terms of the STN’s
graph, although such updates are considered decremental, as they weaken the
constraints, they actually increase the weight of edges (Figure 2).

Algorithms 1–5 provide the pseudocode of the original, theoretical DPPC,
describing all parts of the support graph lifecycle: its construction and the exe-
cution of updates upon it [12].

An Efficient Decremental Algorithm for Simple Temporal Networks 5

Algorithm 2 Support-DPPC
Input: (1) A graph S = ⟨V,E⟩ and a simplicial elimination ordering d. (2) A weight support

graph D = ⟨V ′, E′⟩. (3) New weight w′
i→j > wi→j for the edge (i, j). (4) Edge (a, b) ∈ E.

Output: Updated graphs S and D.
1: wa→b ← w′

a→n
2: if (oa→b, µa→b) /∈ E′ then
3: return
4: remove (oa→b, µa→b) from E′

5: if Nin(µa→b) ̸= 0 then
6: return
7: V ∗ ← Affected-Endpoints(S,D, (a, b))
8: V + ← Shared-Neighbours(S,D, (a, b))
9: call P3C(SV + , dV +)
10: call Update-Support-Graph(SV + , dV + , D)

Algorithm 3 Update-Support-Graph
Input: (1) A PPC STN S = ⟨V,E,Emin⟩ where each constraint ci→j ∈ C is annotated by its

original weight wi→j (in E) and its minimum weight ωi→j (in Emin). (2) A simplicial elimination
ordering d = (vn, vn−1, ..., v1). (3) A weight support graph D = ⟨V ′, E′⟩ in which no edges are
adjacent to any marked minimum node.

Output: The weight support graph D for S.
1: for all (u, v) ∈ E do
2: if ωu→v = wu→v and µu→v is marked then
3: add (ou→v, µu→v) to E′

4: for k → 1 to n do
5: for all i, j < k such that {vi, vj}, {vj , vk} ∈ E do
6: call find-support(i, k, j)
7: call find-support(k, j, i)
8: call find-support(i, j, k)
9: for all (u, v) ∈ Emin do clear mark on µu→v

10: return D

Procedure 4 find-support
if µx→y is marked and ωx→y = ωx→z + ωz→y then

add △xzy to V ′

add (µx→z,△xzy), (µz→y,△xzy), and (△xzy, µx→y) to E′

Procedure 5 Affected-Endpoints
Input: (1) A PPC STN S = ⟨V,E,Emin⟩ where each constraint ci→j ∈ C is annotated by its

original weight wi→j (in E) and its minimum weight ωi→j (in Emin). (2) A weight support graph
D = ⟨V ′, E′⟩. (3) Updated edge a→ b

Output: Set of all affected vertices of µ-type.
1: initialize Q← ∅
2: enqueue µa→b in the queue Q
3: while Q is not empty do
4: dequeue µu→v from Q
5: if Nin(µu→v) = ∅ then
6: mark µu→v

7: add u and v to V ∗

8: reset ωu→v to wu→v

9: for all △xyz ∈ Nout(µu→v) do
10: enqueue µx→z in Q
11: remove △xyz and edges attached to it from D

12: return V ∗

6 Kozyr, Aridi and Yorke-Smith

Procedure 6 Improved Update-Support-Graph
Input: (1) A PPC STN S = ⟨V,E,Emin⟩ where each constraint ci→j ∈ C is annotated by its

original weight wi→j (in E) and its minimum weight ωi→j (in Emin). (2) A simplicial elimination
ordering d = (vn, vn−1, ..., v1). (3) A weight support graph D = ⟨V ′, E′⟩ in which no edges are
adjacent to any marked minimum node.

Output: The weight support graph D for S.
1: for all marked µu→v ∈ V ′ do
2: if ωu→v = wu→v then
3: add (ou→v, µu→v) to E′

4: unmark µu→v

5: for all marked µu→v ∈ V ′ do
6: for all j ̸= v and (u, j) ∈ Emin do
7: call find-support(u, v, j)
8: clear all markings
9: return D

DPPC – called Support-DPPC in ten Thije [12] – works by identifying and
marking vertices of type µa→b that could have been affected by changing the
weight. After that, the P3C algorithm is invoked on an identified subset of ver-
tices. After we have found the new minimal weights for this subset, we need
to restore support for them. This can be done through oa→b or through other
µ-type vertices, forming a △-type node that would have an outgoing edge to the
µ vertex of interest.

3 Developing an Efficient Algorithm

We improve the proposed (theoretical) algorithm DPPC by introducing nuanced
conditions for initializing the iteration of the algorithm’s key loop.

An important omission from the original DPPC pseudocode [12] is the fol-
lowing. While the loops at lines 4 and 5 in the Update-Support-Graph method
(Algorithm 3) perform a check for constructing support edges, it is not necessary
to check that many edges. As a consequence of the use of the Affected-Endpoints
procedure (Algorithm 5), the only vertices that require new support edges are
the marked vertices.

In more detail, the original Update-Support-Graph method (Algorithm 3)
checks all possible combinations of paths u → j → v and checks whether it
is possible to construct a support for µu→v, but the check of whether µu→v is
marked is conducted only within find-support method (Algorithm 4). The conse-
quence is redundant calls to the find-support method. Instead, by iterating over
only marked vertices µu→v, we can check all vertices j such that there exists a
path u → j → v, and reduce the number of calls to the find-support method as
the check for marked would be done outside of the loop. This leads to skipping
over combinations of u and v that do not need a new support edge, but that
however were previously checked in the original pseudocode.

Therefore, a combination of loops to restore supports and the find-support
method can be simplified to the procedure in Algorithms 6 and 7.

An Efficient Decremental Algorithm for Simple Temporal Networks 7

Procedure 7 Improved find-support
if ωx→y = ωx→z + ωz→y then

add △xzy to V ′

add (µx→z,△xzy), (µz→y,△xzy), and (△xzy, µx→y) to E′

4 Experimental Results

Experiments were conducted on a single core of an Intel Xeon Platinum 8358P
CPU running at 2.60GHz and with 3.5 GB of RAM, running Red Hat Enterprise
Linux 9.4. The DPPC algorithm was built in the language Java on top of the
existing codebase of Planken [9, 10].

We look first at the relative performance of P3C and DPPC on single graphs of
various types, and then at their scaling performance as the STN grows in number
of vertices. Preliminary experiments (not reported) found that the unimproved
DPPC using the original Algorithm 3 instead of the improved Algorithm 6 was
consistently slower – up to orders of magnitude slower, in fact – than simply
recomputing the whole STN using P3C. This was due to the overhead of main-
taining the support graph.

4.1 Instance generation

Given a STN, we need a means to generate (decremental) updates to it. We
settled on a proportional approach. This approach multiplies the weight of
randomly-selected edges by a given coefficient according to a formula |w|·scale+
w, allowing only incremental updates to be generated. This way, we could easily
generate updates with different levels of scaling, allowing us to analyse the be-
haviour of DPPC in different scenarios with different levels of disruption of the
minimal weights. We call parameter w the ‘update generator constant’.

Instances of two types of STN graphs formed the benchmark set: hierarchical
task network (HTN) graphs, and scale free (SF) graphs.

The HTN-derived STN instances represent temporal sub-problems from a
class of knowledge-based planning [13]. They were generated using an HTN
generator from the library by Planken et al. [9] with parameters of branch depth
in a range of [3, 8], number of branches in a range of [3, 14], landmark ratio of
0.2, and probability of SR-edge of 0.5. This almost exactly replicates the setup
in (incremental) experiments by ten Thije [12], slightly increasing maximum
branch depth and number of branches to adjust for a bigger number of tasks.
The scale-free graphs (SF) were generated with a degree of 3.

4.2 Performance comparison on single graphs

With the first experiment we seek to test the main hypothesis regarding the
algorithm: since DPPC applies the P3C algorithm on the reduced set of vertices,
it should perform better than P3C in most scenarios where there is a modest
amount of change in the STN.

8 Kozyr, Aridi and Yorke-Smith

0 0.2 0.4 0.6 0.8 1

·104

0

500

1,000

1,500

2,000

E
xe

cu
ti

on
ti

m
e

(m
s)

Fig. 3: Comparison of performance of DPPC (red) and P3C (blue) on an HTN
graph, 0.5 generator constant, 3300 vertices. The horizontal axis corresponds to
the index in the sorted list of measurements by the time of DPPC execution.

To test this hypothesis we conducted a series of runs on graphs of the same
size to explore how DPPC performs on them in comparison to P3C. Each run is
parameterised by the combination of the update generator constant (see above),
the type of the graph (HTN, SF), and the graph size (3300 vertices for HTN
graphs, 1500 vertices for SF graphs). For each combination, 10 graphs were gen-
erated; on each graph, 10 sets of 100 updates each were generated and executed.
Each set contains 100 entries indicating the edge and the weight change made
to the specified edge. For each entry, the weight in the graph is changed and
followed by the execution of both algorithms recalculating minimum weights.
The time taken for DPPC and P3C execution is measured and recorded.

In order to account for initialisation effects (Java initialisation, garbage col-
lection, cache misses), for each update set the first 10 updates were used as a
warmup, after which the graph was reset to its original state and the entire
update set was executed.

Figure 3 and Table 1 show that DPPC outperforms P3C in most configura-
tions. While sometimes DPPC’s total execution times are higher than that of
P3C, DPPC still outperforms P3C on average. This holds for both tested types
of graphs (hierarchical task network and scale-free graphs). Table 2 reports the
average and standard deviations of runtimes. The high standard deviation of
DPPC is discussed in the sequel.

The results reported include updates to the graph where DPPC could stop
immediately, after verifying that the an update would not result in a change in
minimal weights. Table 3 indicates how many updates were discarded by DPPC,
a feature which allowed DPPC to gain a significant advantage in execution times.

An Efficient Decremental Algorithm for Simple Temporal Networks 9

Table 1: Number of times DPPC has a strictly lower runtime than P3C, 10000
measurements per combination of graph type and generator constant.

Generator constant HTN 3300 vertices SF 1500 vertices

0.1 9565 (95.65%) 9711 (97.115%)
0.5 9548 (95.48%) 9749 (97.49%)
1 9518 (95.18%) 9768 (97.68%)
2 9567 (95.67%) 9758 (97.58%)

Table 2: Average and standard deviation of run time of DPPC and P3C algo-
rithms on HTN with 3300 vertices, 10000 measurements per generator constant.

Generator constant DPPC [ms]
avg ± std

P3C [ms]
avg ± std

0.1 830.12± 556.66 1333.49± 88.15
0.5 863.31± 585.93 1390.40± 95.60
1 883.96± 599.32 1422.62± 94.74
2 831.33± 566.00 1350.95± 90.59

As an ablation in the data, Table 4 reports the same as the earlier Table 1 but
excluding those runs where DPPC immediately disregarded an update.

Table 4 demonstrates the advantage of DPPC over P3C, making it a preferable
alternative in most of the scenarios where updates change the minimal weight:
in 94.9% on HTN graphs and in 96.7% on SF among conducted updates in this
experiment.

Figure 4 shows the distribution of differences in the run time between P3C
and DPPC on the same updates.

Figure 5 likewise reports the same distribution but excluding entries with an
early exit of DPPC. Both Figures 4 and 5 demonstrate a strong advantage of
DPPC over P3C. The peak on the right – the closest to 0 – can be attributed
to ‘regular’ behaviour of DPPC when early exit is not triggered, showing how a

Table 3: Proportion of times when DPPC stopped early in the experiment, 10000
measurements per combination of graph type and generator constant.

Generator constant HTN 3300 vertices SF 1500 vertices

0.1 9.84% 19.95%
0.5 11.09% 21.87%
1 12.76% 23.31%
2 14.73% 25.09%

10 Kozyr, Aridi and Yorke-Smith

Table 4: Proportion of measurements in which DPPC has a strictly lower runtime
than P3C, 10000 measurements conducted per combination of graph type and
generator constant experiments, excludes measurements with early exit.

Generator constant HTN 3300 vertices SF 1500 vertices

0.1 95.18% 96.39%
0.5 94.92% 96.79%
1 94.48% 96.97%
2 94.92% 96.77%

All 94.87% 96.73%

−2,000 −1,500 −1,000 −500 0 500
0

50

100

150

Number of instances

R
un

ti
m

e
di

ffe
re

nc
e

(m
s)

Fig. 4: Distribution of the difference in runtime between DPPC and P3C in the
experiment with 0.5 generator constant, 3300 vertices HTN, including entries
with early exit.

An Efficient Decremental Algorithm for Simple Temporal Networks 11

−2,000 −1,500 −1,000 −500 0 500
0

50

100

150

Number of instances

R
un

ti
m

e
di

ffe
re

nc
e

(m
s)

Fig. 5: Distribution of the difference in runtime between DPPC and P3C in the
experiment with 0.5 generator constant, 3300 vertices HTN, excluding entries
with early exit.

precomputed support graph helps identify a subset of the problem, reducing the
number of edges needing a recalculation resulting in a lower runtime.

Variance of DPPC. The peaks on the left of the graphs were less expected; their
presence explains the higher variance. Our original assumption was that the
peaks are related to updates with an early exit, but it is evident from the figures
that the peaks stay in the plots even when entries with early exits are removed.
Figures 6a and 6b show distributions of the run-time of the algorithms, in the
same experiment including and excluding early exit entries respectively.

Both figures exhibit a peak in their distributions, indicating that DPPC ex-
ecutes ‘too fast’ in some scenarios – execution times are less than 10ms while
the average times is around 800 ms. While this at first seems anomalous, it ap-
pears to be expected. Due to the fact that DPPC executes on a smaller subset
of vertices, its performance is heavily impacted by the size of the graph formed
by affected vertices – the smaller the number of affected vertices and edges, the
faster the execution would be. Thus these peaks in previous figures, are related to
the size of the identified subset size. Figure 7 demonstrating the distribution of
the number of affected vertices (size of V + set) supports this assumption, show-
ing a peak of similar size around 0. These peaks also explain the high standard
deviation in the run time of DPPC in Table 2.

12 Kozyr, Aridi and Yorke-Smith

0 500 1,000 1,500 2,000
0

1,000

2,000

3,000

4,000

Execution time (ms)

N
um

be
r

of
in

st
an

ce
s

(a) Including entries with early exit

0 500 1,000 1,500 2,000
0

500

1,000

1,500

2,000

2,500

Execution time (ms)

N
um

be
r

of
in

st
an

ce
s

(b) Excluding entries with early exit

Fig. 6: Distribution of the runtime of DPPC (red) and P3C (blue): 0.5 generator
constant, 3300 vertices HTN.

0 500 1,000 1,500 2,000
0

500

1,000

1,500

Number of vertices in the V + set

N
um

be
r

of
in

st
an

ce
s

Fig. 7: Distribution of the size of V + in the experiment with 0.5 generator con-
stant, 3300 vertices HTN, excludes entries with early exit.

An Efficient Decremental Algorithm for Simple Temporal Networks 13

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

500

1,000

1,500

Number of vertices in the graphs

M
ea

n
ex

ec
ut

io
n

ti
m

e
(m

s)

Fig. 8: Mean execution time with the growing size of HTN graph comparison of
P3C (blue), DPPC (red) and DPPC excluding entries with early exit (orange),
2000 measurements per graph size. Filled region indicates standard deviation.

4.3 Performance comparison on different sizes of graphs

Thus far we have studied the relative performance of DPPC to P3C on the same
STN instances. A second hypothesis is that DPPC should perform better than
P3C as the size of the STN grows in terms of the number of vertices.

Since the main point of DPPC is to reduce the subset of vertices that need to
be recalculated in comparison to P3C that runs on the entire graph, we expect
to find empirical evidence that bigger graphs would benefit more in run time
from DPPC over P3C. This is because the gap between the number of affected
and unaffected vertices would increase on average.

To test this hypothesis, we conducted benchmarks on graphs of different
sizes, in terms of number of vertices. For each size, five graphs were generated,
and four sets of updates 100 each were used for each graph, generating 2000
measurements per the size of the graph. Graphs were generated using an HTN
generator the same parameters described earlier.

Figure 8 shows that DPPC outperforms P3C, extending the gap in perfor-
mance with growth in the number of vertices. The performance advantage of
DPPC remains evident even when the early exit feature is disabled.

5 Conclusion and Outlook

This paper closed a gap in the literature between a theoretical approach to
decremental reasoning over STNs, and an efficient and empirically verified algo-

14 Kozyr, Aridi and Yorke-Smith

rithm. Starting with the theoretical algorithm of ten Thije [12], we developed an
improvement for the critical Update-Support-Graph component.

The presented DPPC algorithm was benchmarked against the state-of-the-art
non-incremental algorithm P3C. Across the benchmark sets of STN instances,
DPPC outperforms monolithic use of P3C on average, showing diminished perfor-
mance only in less than 5% of the updates. Further, DPPC has a lower average
execution time without considering automatically discarded updates. That is,
without early exit DPPC still outperforms P3C. Additionally, the reason behind
the run-time distribution DPPC was investigated and seems to correlate with
the number of affected nodes. DPPC performs equally well on hierarchical task
network graphs and scale-free graphs.

In future work, it would be interesting to see the effect of incremental and
decremental solving combined, especially on practical STN instances arising,
e.g. from planning systems [8, 10]. Second, the incremental (and potentially
decremental extensions of) STN algorithms of ten Thije [12] and Micheli [8] have
not, to our knowledge, been contrasted empirically. Lastly, the use of learned
heuristics for incremental and decremental reasoning can be explored.

Acknowledgements The authors thank the BNAIC’24 reviewers for their sug-
gestions. Thanks to L. Planken. Thanks also to F. Doolaard, D. Graur, T. Yue,
B. Zablocki, and to S. van der Laan. This research was partially supported by
TAILOR, a project funded by EU Horizon 2020 programme under grant number
952215.

References

[1] Ai-Chang, M., Bresina, J.L., Charest, L., Chase, A., Hsu, J.C., Jónsson,
A.K., Kanefsky, B., Morris, P.H., Rajan, K., Yglesias, J., Chafin, B.G., Dias,
W.C., Maldague, P.F.: MAPGEN: Mixed-initiative planning and scheduling
for the Mars Exploration Rover mission. IEEE Intelligent Systems 19(1),
8–12 (2004), https://doi.org/10.1109/MIS.2004.1265878

[2] Cesta, A., Oddi, A.: Gaining efficiency and flexibility in the simple temporal
problem. In: Proceedings of the Third International Workshop on Temporal
Representation and Reasoning (TIME’96). pp. 45–50 (1996), https://doi.
org/10.1109/TIME.1996.555676

[3] Coles, A., Coles, A., Fox, M., Long, D.: Incremental constraint-posting al-
gorithms in interleaved planning and scheduling. In: Proceedings of the
ICAPS’09 Workshop on Constraint Satisfaction Techniques for Planning
and Scheduling (COPLAS’09) (2009), https://icaps09.icaps-conference.org/
workshops/ICAPS2009-WS2-proceedings.zip

[4] Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artifi-
cial Intelligence 49(1), 61–95 (1991), https://doi.org/10.1016/0004-3702(91)
90006-6

https://doi.org/10.1109/MIS.2004.1265878
https://doi.org/10.1109/TIME.1996.555676
https://doi.org/10.1109/TIME.1996.555676
https://icaps09.icaps-conference.org/workshops/ICAPS2009-WS2-proceedings.zip
https://icaps09.icaps-conference.org/workshops/ICAPS2009-WS2-proceedings.zip
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1016/0004-3702(91)90006-6

An Efficient Decremental Algorithm for Simple Temporal Networks 15

[5] Gerevini, A., Perini, A., Ricci, F.: Incremental algorithms for managing
temporal constraints. In: Proceedings of the Eighth International Confer-
ence on Tools with Artificial Intelligence (ICTAI’96). pp. 360–365 (1996),
https://doi.org/10.1109/TAI.1996.560477

[6] Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and
practice. Elsevier (2004)

[7] Hunsberger, L., Posenato, R.: Simple temporal networks: A practical foun-
dation for temporal representation and reasoning. In: Proceedings of the
Twenty-Eighth International Symposium on Temporal Representation and
Reasoning (TIME’21). LIPIcs, vol. 206, pp. 1:1–1:5 (2021), https://doi.org/
10.4230/LIPIcs.TIME.2021.1

[8] Micheli, A.: An efficient incremental simple temporal network data structure
for temporal planning. CoRR abs/2212.07226 (2022), https://doi.org/10.
48550/arXiv.2212.07226

[9] Planken, L., de Weerdt, M., van der Krogt, R.: P3C: A new algorithm for the
simple temporal problem. In: Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling (ICAPS’08). pp. 256–
263 (2008), http://www.aaai.org/Library/ICAPS/2008/icaps08-032.php

[10] Planken, L., de Weerdt, M., Yorke-Smith, N.: Incrementally solving STNs
by enforcing partial path consistency. In: Proceedings of the Twen-
tieth International Conference on Automated Planning and Schedul-
ing (ICAPS’10). pp. 129–136 (2010), http://www.aaai.org/ocs/index.php/
ICAPS/ICAPS10/paper/view/1447

[11] Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization
of the shortest-path problem. Journal of Algorithms 21(2), 267–305 (1996),
https://doi.org/10.1006/jagm.1996.0046

[12] ten Thije, J.O.A.: Towards a dynamic algorithm for the Simple Temporal
Problem. Master’s thesis, Delft University of Technology (2011), https:
//resolver.tudelft.nl/uuid:bb91b0cf-9ce5-4470-a326-b61885d34988

[13] Yorke-Smith, N.: Exploiting the structure of hierarchical plans in tem-
poral constraint propagation. In: Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI’05). pp. 1223–1228 (2005),
http://www.aaai.org/Library/AAAI/2005/aaai05-194.php

https://doi.org/10.1109/TAI.1996.560477
https://doi.org/10.4230/LIPIcs.TIME.2021.1
https://doi.org/10.4230/LIPIcs.TIME.2021.1
https://doi.org/10.48550/arXiv.2212.07226
https://doi.org/10.48550/arXiv.2212.07226
http://www.aaai.org/Library/ICAPS/2008/icaps08-032.php
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1447
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1447
https://doi.org/10.1006/jagm.1996.0046
https://resolver.tudelft.nl/uuid:bb91b0cf-9ce5-4470-a326-b61885d34988
https://resolver.tudelft.nl/uuid:bb91b0cf-9ce5-4470-a326-b61885d34988
http://www.aaai.org/Library/AAAI/2005/aaai05-194.php

	An Efficient Decremental Algorithm for Simple Temporal Networks

